首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
安全科学   2篇
废物处理   2篇
环保管理   9篇
综合类   5篇
基础理论   5篇
污染及防治   17篇
评价与监测   3篇
社会与环境   2篇
  2022年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2004年   3篇
  2003年   4篇
  2000年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
41.
This study investigates the influence of the two different clay minerals kaolinite and smectite as well as of organic matter on the cation sorption and desorption behaviour of three imidazolium based ionic liquids -1-butyl-3-methyl-imidazolium tetrafluoroborate (IM14 BF(4)), 1-methyl-3-octyl-imidazolium tetrafluoroborate (IM18 BF(4)) and 1-butyl-3-methyl-imidazolium bis[(trifluoromethyl)sulfonyl]imide (IM14 (CF(3)SO(2))(2)N) - in soil. The German standard soil Lufa 2.2 - a natural soil classified as a loamy sand - was the basis substrate for the different soil compositions and also served as a reference soil. The addition of organic matter and clays increases the sorption of the substances and in particular smectite had striking effects on the sorption capacity for all three ionic liquids indicating that ionic interactions play an important role for sorption and desorption processes of ionic liquids in soil. One exception was for kaolinite-containing soils and the IM14 cation: with (CF(3)SO(2))(2)N(-) as an anion the sorption was identical at either 10 wt% or 15 wt% clay content, and with BF(4)(-) sorption was even lower at 15 wt% kaolinite than at 10 wt%. Desorption was weak for IM18 BF(4), presumably owing to the longer alkyl side chain. With regard to the influence of kaolinite on desorption, the same pattern was observed as it was found for the sorption of IM14 BF(4) and IM14 (CF(3)SO(2))(2)N.  相似文献   
42.
The feasibility of monitoring CO2 migration in a saline aquifer at a depth of about 650 m with cross-hole and surface–downhole electrical resistivity tomography (ERT) is investigated at the CO2SINK test site close to Ketzin (Germany). The permanent vertical electrical resistivity array (VERA) consists of 45 electrodes (15 in the injection well Ktzi201 and 15 in each of the two observation wells Ktzi200 and Ktzi202), successfully placed on the electrically insulated casings, in the depth range of about 590–740 m with a spacing of about 10 m. The three Ketzin wells are arranged as perpendicular triangle with distances of 50 and 100 m.First synthetic modelling studies indicate an increase of the electrical resistivity of about 200% caused by CO2 injection, corresponding to a bulk CO2 saturation of 50%, which is in good agreement with laboratory studies. Finite difference inversion of field data delivers three-dimensional resistivity distributions between the wells which are consistent with the reservoir modelling studies.To increase the limited observation area provided by the cross-hole measurements, additional surface–downhole measurements were deployed. A main CO2 migration in SE–NW direction is deduced from surface to downhole resistivity experiments.The first cross-hole time-lapse results show that the resolution and the coverage of the electrode array in the Ketzin setting are sufficient to resolve the expected resistivity changes on the characteristic length scale of the electrode array. Significant resistivity changes could be measured, however, detailed information on the CO2 plume could not be resolved yet by VERA under the existing geological circumstances.  相似文献   
43.
There is an increasing need to monitor concentrations of polar organic contaminants in the aquatic environment. Integrative passive samplers can be used to assess time weighted average aqueous concentrations, provided calibration data are available and sampling rates are known. The sampling rate depends on environmental factors, such as temperature and water flow rate. Here we introduce an apparatus to investigate the sampling properties of passive samplers using river-like flow conditions and ambient environmental matrices: river water and treated sewage effluent. As a model sampler we selected Empore SDB-RPS disks in a Chemcatcher housing. The disks were exposed for 1 to 8 days at flow rates between 0.03 and 0.4 m s(-1). Samples were analysed using a bioassay for estrogenic activity and by LC-MS-MS target analysis of the pharmaceuticals sulfamethoxazole, carbamazepine and clarithromycin. In order to assess sampling rates of SDB disks, we also measured aqueous concentrations of the pharmaceuticals. Sampling rates increased with increasing flow rate and this relationship was not affected by the environmental matrix. However, SDB disks were only sampling in the integrative mode at low flow rates <0.1 m s(-1) and/or for short sampling times. The duration of linear uptake was particularly short for sulfamethoxazole (1 day) and longer for clarithromycin (5 days). At 0.03 m s(-1) and 12-14 degrees C, the sampling rate of SDB disks was 0.09 L day(-1) for clarithromycin, 0.14 L day(-1) for sulfamethoxazole and 0.25 L day(-1) for carbamazepine. The results show that under controlled conditions, SDB disks can be effectively used as passive sampling devices.  相似文献   
44.
At a mononitrotoluene-contaminated waste disposal site, the groundwater was screened for polar transformation products of mononitrotoluenes, by means of HPLC-MS, HPLC-NMR and further off-line NMR and MS techniques. Besides expected metabolites such as aminotoluenes (ATs) and nitrobenzoic acids (NBAs), three unknowns (di- and tetrahydro-derivatives of (2-oxo-quinolin-3-yl) acetic acid) could be identified which, in the context of explosives and related compounds, are new metabolites. Evidence could be provided by microcosm experiments with 2-nitrotoluene (2-NT) that these metabolites are microbial transformation products of 2-NT under anaerobic conditions. The NMR and MS data are presented and the possible pathway for the formation of these metabolites after addition of 2-NT to fumarate is discussed.  相似文献   
45.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号