首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   1篇
  国内免费   13篇
安全科学   14篇
废物处理   27篇
环保管理   18篇
综合类   68篇
基础理论   44篇
污染及防治   95篇
评价与监测   20篇
社会与环境   3篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   10篇
  2017年   8篇
  2016年   18篇
  2015年   3篇
  2014年   11篇
  2013年   18篇
  2012年   17篇
  2011年   23篇
  2010年   12篇
  2009年   17篇
  2008年   15篇
  2007年   19篇
  2006年   19篇
  2005年   9篇
  2004年   7篇
  2003年   6篇
  2002年   4篇
  2001年   8篇
  2000年   5篇
  1999年   5篇
  1997年   2篇
  1993年   2篇
  1979年   1篇
  1976年   2篇
  1970年   2篇
  1969年   1篇
  1967年   1篇
  1966年   3篇
  1964年   2篇
  1963年   1篇
  1962年   1篇
  1960年   1篇
  1959年   2篇
  1957年   1篇
  1956年   2篇
  1955年   1篇
  1954年   2篇
  1952年   1篇
  1950年   1篇
  1948年   1篇
  1942年   1篇
  1940年   1篇
  1939年   1篇
  1936年   1篇
  1930年   1篇
  1927年   1篇
排序方式: 共有289条查询结果,搜索用时 31 毫秒
11.
Jung CH  Osako M 《Chemosphere》2007,69(2):279-288
This study aims to identify the thermodynamic behavior of rare metal elements during the melting process of municipal solid waste incineration residues. The fate of several selected rare metal elements was investigated using two approaches: experimental and thermodynamic equilibrium calculation at two actual melting plants. The results revealed that Ag, Bi, Ga, Ge, In, Pd, Sb, Te, and Tl are readily volatilized as chloride and/or gaseous forms and then condensed in melting furnace fly ash. On the other hand, Cr, Ni, Ta, V, and Zr tend to mostly remain in molten slag. Sn is volatilized as SnS (g) under reducing conditions while volatilization is suppressed under oxidizing conditions. Thermodynamically, total volatilization of Mn as MnCl2 (g) occurred with highly available chlorine under oxidizing conditions. However, at the actual plants, only a small proportion was volatilized. As for Co, Mo, and W, no volatilization occurred at the actual plants although the calculations suggest that these elements can form volatile metal chloride and volatilize. Non-equilibrium and heterogeneity of the actual plant melting furnace could explain the discrepancy. This study provided a good qualitative view of the behavior of rare metals in the melting process, but further investigation is required to produce a more accurate simulation and to resolve the discrepancy.  相似文献   
12.
Moon HB  Yoon SP  Jung RH  Choi M 《Chemosphere》2008,73(6):880-889
Toxic organic contaminants and a macrobenthic community were assayed in sediments collected near a wastewater treatment plant (WWTP) outfall to assess the impact of WWTP discharges on an aquatic environment. Average concentrations of toxic organic contaminants in sediments from 20 locations were 96.7ng TEQ/kg dry matter for PCDD/Fs, 1.84ng TEQ/kg dry matter for dioxin-like PCBs, 29.1microg/kg dry matter for PBDEs, 411microg/kg dry matter for nonylphenols, 1021microg/kg dry matter for fecal sterols, and 928microg/kg dry matter for PAHs. Concentrations of all the organic contaminants and fecal sterols varied widely and there was a clear decrease in concentration gradients with increasing distances from the WWTP outfall. This result suggests that WWTP activities contribute to contamination by organic chemicals. A survey of benthic organisms showed the dominance of a few polychaete species, indicating a deterioration of the macrobenthic community by the WWTP discharge. Non-parametric multidimensional scaling (MDS) ordination and Spearman correlation analyses showed that organic contamination is associated with the benthic community structure. For polychaete species, the sensitive species for organic contaminants was Paraprionospio pinnata, while contaminant-tolerant species were Spiochaetopterus koreana and Capitella capitata. BIOENV analyses of all locations suggested PCDDs and PCDFs as the major contaminants influencing the structure of the macrobenthic community. The present study highlights that continuous WWTP discharges contribute to severe organic contamination and risks for the benthic community in an aquatic ecosystem.  相似文献   
13.
14.
15.
Demand for sustainable renewable energy is on an increase worldwide, whereas the supply is limited. This paper analyses the feasibility of generating electricity and supplying the surplus steam to Daeduk Industrial Complex, by incinerating the combustible municipal waste generated in Daejeon Metropolitan City. The economic feasibility of surplus biogas generated from the anaerobic digestion of food waste and food waste leachate has been analysed. This study estimated resource circulation facility to supply 23,200 m3/day of biogas generated to Daejeon Combined Heat and Power plant. By 2023, it is expected to supply 25.7 tons of steam per hour all year round. The additional steam demand in Daeduk Industrial Complex is estimated as 101,537 tons/year. Surplus biogas will be supplied through an additional 960-m new installation. The cost of biogas is estimated at 30% of the unit biogas production cost. Daejeon Combined Heat and Power plant expects to make 60% additional profit, and Daeduk Industrial Complex and the communities nearby expect to achieve 10% cost savings. It also reduces the dependence of energy on fossil fuels, contributes to national environmental energy policy in reduction in greenhouse gases, creates competitiveness in local business and reduces corporate tax and generates revenue.  相似文献   
16.
In South Korea, nine million tons of fly ash (FA) are annually produced and approximately 70 % is reutilized for industrial demand. For the prompt reuse and insufficient reclamation site, quality control of FA which is main productive construction material from coal ash is very important. Assessed Pozzolanic-activity Index (API) test which needs only 2 days for evaluation of pozzolanic reaction is currently considered as an alternative of activity index measurement. This paper aims for an applicability of API test for prompt quality control and investigation of domestic FA properties. For the work, FAs from two different power plant types are prepared, and quality tests are carried out based on Korean Standards (KS) methods and API method. Lots of test results are compared with those from API and K-value test for FA with age of 7 days–1 year. From the test results for FA aged 1 year, API results are evaluated to be closely related with those from activity index and K-value, and the correlations are improved with increasing ages regardless of plant types. The applicability of API test is verified and the reduced period of FA quality evaluation can accelerate prompt use and the related process of FA.  相似文献   
17.
To prepare for the international mercury convention, the characteristics of mercury emissions from a zinc smelting facility in South Korea have been reviewed and a material flow analysis (MFA) has been conducted in this research. As inputs into the mercury MFA study, zinc ores and sulfuric acid were examined, whereas wastewater sludge, effluence water, spent catalyst, and emissions from the casting and roasting processes were examined as outputs. Mercury concentrations extracted from end products like zinc ingots, cadmium ingots, and sulfuric acid were then analyzed. Our results showed that the wastewater sludge discharged from the zinc smelting process had a relatively higher concentration of mercury, indicating that the concentration of mercury was further enriched in the wastewater sludge. The wastes discharged through the zinc smelting process should be thoroughly controlled, as results of the MFA showed that approximately 89 % of the mercury contained in the original input was later found in the waste. According to this study, the higher the concentration of mercury within zinc ores at the input stage, the higher is the mercury concentration found in the wastewater sludge at the output stage.  相似文献   
18.
Energy supply utilities release significant amounts of greenhouse gases (GHGs) into the atmosphere. It is essential to accurately estimate GHG emissions with their uncertainties, for reducing GHG emissions and mitigating climate change. GHG emissions can be calculated by an activity-based method (i.e., fuel consumption) and continuous emission measurement (CEM). In this study, GHG emissions such as CO2, CH4, and N2O are estimated for a heat generation utility, which uses bituminous coal as fuel, by applying both the activity-based method and CEM. CO2 emissions by the activity-based method are 12–19% less than that by the CEM, while N2O and CH4 emissions by the activity-based method are two orders of magnitude and 60% less than those by the CEM, respectively. Comparing GHG emissions (as CO2 equivalent) from both methods, total GHG emissions by the activity-based methods are 12–27% lower than that by the CEM, as CO2 and N2O emissions are lower than those by the CEM. Results from uncertainty estimation show that uncertainties in the GHG emissions by the activity-based methods range from 3.4% to about 20%, from 67% to 900%, and from about 70% to about 200% for CO2, N2O, and CH4, respectively, while uncertainties in the GHG emissions by the CEM range from 4% to 4.5%. For the activity-based methods, an uncertainty in the Intergovernmental Panel on Climate Change (IPCC) default net calorific value (NCV) is the major uncertainty contributor to CO2 emissions, while an uncertainty in the IPCC default emission factor is the major uncertainty contributor to CH4 and N2O emissions. For the CEM, an uncertainty in volumetric flow measurement, especially for the distribution of the volumetric flow rate in a stack, is the major uncertainty contributor to all GHG emissions, while uncertainties in concentration measurements contribute a little to uncertainties in the GHG emissions.
Implications:Energy supply utilities contribute a significant portion of the global greenhouse gas (GHG) emissions. It is important to accurately estimate GHG emissions with their uncertainties for reducing GHG emissions and mitigating climate change. GHG emissions can be estimated by an activity-based method and by continuous emission measurement (CEM), yet little study has been done to calculate GHG emissions with uncertainty analysis. This study estimates GHG emissions and their uncertainties, and also identifies major uncertainty contributors for each method.  相似文献   
19.
ABSTRACT

A speciated, hourly, and gridded air pollutants emission modeling system (SHEMS) was developed and applied in predicting hourly nitrogen dioxide (NO2) and ozone (O3) levels in the Seoul Metropolitan Area (SMA). The primary goal of the SHEMS was to produce a systemized emission inventory for air pollutants including ozone precursors for modeling air quality in urban areas.

The SHEMS is principally composed of three parts: (1) a pre-processor to process emission factors, activity levels, and spatial and temporal information using a geographical information system; (2) an emission model for each source type; and (3) a post-processor to produce report and input data for air quality models through database modeling. The source categories in SHEMS are point, area, mobile, natural, and other sources such as fugitive emissions. The emission database produced by SHEMS contains 22 inventoried compounds: sulfur dioxide, NO2, carbon monoxide, and 19 speciated volatile organic compounds. To validate SHEMS, the emission data were tested with the Urban Airshed Model to predict NO2 and O3 concentrations in the SMA during selected episode days in 1994. The results turned out to be reliable in describing temporal variation and spatial distribution of those pollutants.  相似文献   
20.
Abstract

Combustion of spent vacuum residue hydrodesulfurization catalyst and incineration of paper sludge were carried out in thermo-gravimetric analyzer and an internally circulating fluidized-bed (ICFB) reactor. From the thermogravimetric analyzer-differential thermo-gravimetric curves, the pre-exponential factors and activation energies are determined at the divided temperature regions, and the thermo-gravimetric analysis patterns can be predicted by the kinetic equations. The effects of bed temperature, gas velocity in the draft tube and annulus, solid circulation rate, and waste feed rate on combustion efficiency of the wastes have been determined in an ICFB from the experiments and the model studies. The ICFB combustor exhibits uniform temperature distribution along the bed height with high combustion efficiency (>90%). The combustion efficiency increases with increasing reaction temperature, gas velocity in the annulus region, and solid circulation rate and decreases with increasing waste feed rate and gas velocity in the draft tube. The simulated data from the kinetic equation and the hydrodynamic models predict the experimental data reasonably well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号