首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   449篇
  免费   2篇
  国内免费   14篇
安全科学   28篇
废物处理   48篇
环保管理   24篇
综合类   76篇
基础理论   85篇
污染及防治   161篇
评价与监测   38篇
社会与环境   5篇
  2023年   3篇
  2022年   5篇
  2021年   4篇
  2020年   2篇
  2019年   8篇
  2018年   19篇
  2017年   27篇
  2016年   27篇
  2015年   10篇
  2014年   19篇
  2013年   32篇
  2012年   27篇
  2011年   41篇
  2010年   18篇
  2009年   24篇
  2008年   23篇
  2007年   29篇
  2006年   27篇
  2005年   16篇
  2004年   11篇
  2003年   14篇
  2002年   7篇
  2001年   12篇
  2000年   7篇
  1999年   7篇
  1997年   2篇
  1994年   3篇
  1993年   3篇
  1976年   2篇
  1970年   2篇
  1967年   1篇
  1966年   3篇
  1964年   2篇
  1963年   1篇
  1962年   1篇
  1960年   1篇
  1959年   2篇
  1957年   1篇
  1956年   2篇
  1955年   1篇
  1954年   2篇
  1952年   1篇
  1950年   1篇
  1948年   1篇
  1942年   1篇
  1940年   1篇
  1939年   1篇
  1936年   1篇
  1930年   1篇
  1927年   1篇
排序方式: 共有465条查询结果,搜索用时 281 毫秒
71.
Methane (CH(4)), which is one of the most abundant anthropogenic greenhouse gases, is produced from landfills. CH(4) is biologically oxidized to carbon dioxide, which has a lower global warming potential than methane, when it passes through a cover soil. In order to quantify the amount of CH(4) oxidized in a landfill cover soil, a soil column test, a diffusion cell test, and a mathematical model analysis were carried out. In the column test, maximum oxidation rates of CH(4) (V(max)) showed higher values in the upper part of the column than those in the lower part caused by the penetration of O(2) from the top. The organic matter content in the upper area was also higher due to the active microbial growth. The dispersion analysis results for O(2) and CH(4) in the column are counter-intuitive. As the upward flow rate of the landfill gas increased, the dispersion coefficient of CH(4) slightly increased, possibly due to the effect of mechanical dispersion. On the other hand, as the upward flow rate of the landfill gas increased, the dispersion coefficient of O(2) decreased. It is possible that the diffusion of gases in porous media is influenced by the counter-directional flow rate. Further analysis of other gases in the column, N(2) and CO(2), may be required to support this hypothesis, but in this paper we propose the possibility that the simulations using the diffusion coefficient of O(2) under the natural condition may overestimate the penetration of O(2) into the soil cover layer and consequently overestimate the oxidation of CH(4).  相似文献   
72.
Crops grown in metal-rich serpentine soils are vulnerable to phytotoxicity. In this study, Gliricidia sepium (Jacq.) biomass and woody biochar were examined as amendments on heavy metal immobilization in a serpentine soil. Woody biochar was produced by slow pyrolysis of Gliricidia sepium (Jacq.) biomass at 300 and 500 °C. A pot experiment was conducted for 6 weeks with tomato (Lycopersicon esculentum L.) at biochar application rates of 0, 22, 55 and 110 t ha?1. The CaCl2 and sequential extractions were adopted to assess metal bioavailability and fractionation. Six weeks after germination, plants cultivated on the control could not survive, while all the plants were grown normally on the soils amended with biochars. The most effective treatment for metal immobilization was BC500-110 as indicated by the immobilization efficiencies for Ni, Mn and Cr that were 68, 92 and 42 %, respectively, compared to the control. Biochar produced at 500 °C and at high application rates immobilized heavy metals significantly. Improvements in plant growth in biochar-amended soil were related to decreasing in metal toxicity as a consequence of metal immobilization through strong sorption due to high surface area and functional groups.  相似文献   
73.
Our objective was to evaluate distribution and accumulation of trace elements (TEs) in surface sediments along the Hooghly (Ganges) River Estuary, India, and to assess the potential risk with view to human health. The TE concentrations (mg kg?1 dry weight) exhibited a wide range in the following order: Al (31.801 ± 15.943) > Fe (23.337 ± 7584) > Mn (461 ± 147) > S (381 ± 235) > Zn (54 ± 18) > V (43 ± 14) > Cr (39 ± 15) > As (34 ± 15) > Cu (27 ± 11) > Ni (24 ± 9) > Se (17 ± 8) > Co (11 ± 3) > Mo (10 ± 2) > Hg (0.02 ± 0.01). Clay, silt, iron, manganese and sulphur were important for the accumulation of TE in the sediments as confirmed by factor analysis and Pearson correlation. The accumulation and dispersal of TEs were most likely to be governed by both tide-induced processes and anthropogenic inputs from point and non-point sources. Enrichment factor analysis and geoaccumulation index revealed serious contamination of the sediments with Se and As, while comparing the consensus-based sediment quality guidelines (SQGs), adverse biological effects to benthic fauna might be caused by As, Cu, Ni and Cr. This investigation may serve as a model study and recommends continuous monitoring of As, Se, Cu, Ni and Cr to ascertain that SQGs with respect to acceptable levels of TEs to safeguard geochemical health and ecology in the vicinity of this estuary.  相似文献   
74.
A wide range of waste biomass/waste wood feedstocks abundantly available at mine sites provide the opportunity to produce biochars for cost-effective improvement of mine tailings and contaminated land at metal mines. In the present study, soft- and hardwood biochars derived from pine and jarrah woods at high temperature (700 °C) were characterized for their physiochemical properties including chemical components, electrical conductivity, pH, zeta potential, cation-exchange capacity (CEC), alkalinity, BET surface area and surface morphology. Evaluating and comparing these characteristics with available data from the literature have affirmed the strong dictation of precursor type on the physiochemical properties of the biochars. The pine and jarrah wood feedstocks are mainly different in their proportions of cellulose, hemicellulose and lignin, resulting in biochars with heterogeneous physiochemical properties. The hardwood jarrah biochar exhibits much higher microporosity, alkalinity and electrostatic capacity than the softwood pine. Correlation analysis and principal component analysis also show a good correlation between CEC–BET–alkalinity, and alkalinity–ash content. These comprehensive characterization and analysis results on biochars’ properties from feedstocks of hardwood (from forest land clearance at mine construction) and waste pine wood (from mining operations) will provide a good guide for tailoring biochar functionalities for remediating metal mine tailings. The relatively inert high-temperature biochars can be stored for a long term at mine closure after decades of operations.  相似文献   
75.
Biochar has been considered as a potential sorbent for removal of frequently detected pesticides in water. In the present study, modified and non-modified rice husk biochars were used for aqueous carbofuran removal. Rice husk biochars were produced at 300, 500, and 700 °C in slow pyrolysis and further exposed to steam activation. Biochars were physicochemically characterized using proximate, ultimate, FTIR methods and used to examine equilibrium and dynamic adsorption of carbofuran. Increasing pyrolysis temperature led to a decrease of biochar yield and increase of porosity, surface area, and adsorption capacities which were further enhanced by steam activation. Carbofuran adsorption was pH-dependant, and the maximum (161 mg g?1) occurred in the vicinity of pH 5, on steam-activated biochar produced at 700 °C. Freundlich model best fitted the sorption equilibrium data. Both chemisorption and physisorption interactions on heterogeneous adsorbent surface may involve in carbofuran adsorption. Langmuir kinetics could be applied to describe carbofuran adsorption in a fixed bed. A higher carbofuran volume was treated in a column bed by a steam-activated biochar versus non-activated biochars. Overall, steam-activated rice husk biochar can be highlighted as a promising low-cost sustainable material for aqueous carbofuran removal.  相似文献   
76.
In order to investigate the chemical characteristics of atmospheric aerosol measured during a severe winter haze event, 12-hr PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) samples were collected at an urban site in Ulaanbaatar, Mongolia, from January 9 to February 17, 2008. On average, 12-hr PM2.5 mass concentration was 105.1 ± 34.9 μg/m3. Low PM2.5 mass concentrations were measured when low pressure developed over central Mongolia. The 12-hr average organic mass by carbon (OMC) varied from 6.4 to 132.3 μg/m3, with a mean of 54.9 ± 25.4 μg/m3, whereas elemental carbon (EC) concentration ranged from 0.1 to 3.6 μgC/m3, with a mean of 1.5 ± 0.8 μgC/m3. Ammonium sulfate was found to be the most abundant water-soluble ionic component in Ulaanbaatar during the sampling period, with an average concentration of 11.3 ± 5.0 μg/m3. In order to characterize the effect of air mass pathway on fine particulate matter characteristics, 5-day back-trajectory analysis was conducted, using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The haze level was classified into three categories, based on the 5-day air mass back trajectories, as Stagnant (ST), Continental (CT), and Low Pressure (LP) cases. PM2.5 mass concentration during the Stagnant condition was approximately 2.5 times higher than that during the Low Pressure condition, mainly due to increased pollutant concentration of OMC and secondary ammonium sulfate.

Implications: Mongolia is experiencing rapid rates of urbanization similar to other Asian countries, resulting in air pollution problems by the growing number of automobiles and industrialization. Ulaanbaatar, capital of Mongolia, is inherently vulnerable to air pollution because of its emission sources, topography, and meteorological characteristics. Very limited measurements on chemical characteristics of particulate matter have been carried out in Ulaanbaatar, Mongolia.  相似文献   
77.
ABSTRACT

To achieve the current United States National Ambient Air Quality Standards (NAAQS) attainment level for ozone or particulate matter, current photochemical air quality models include tools to determine source apportionment and/or source sensitivity. Previous studies by the authors have used the Ozone and Particulate Matter Source Apportionment Technology and Higher-order Decoupled Direct Method probing tools in CAMx to investigate these source-receptor relationships for ozone. The recently available source apportionment for CMAQ, referred to as the Integrated Source Apportionment Method (ISAM), was used in this study to conduct future year (2030) source attribution modeling. The CMAQ-ISAM ozone source attribution results for selected cities across the U.S. showed boundary conditions were the dominant contributor to the future year highest July maximum daily 8-hour average (MDA8) ozone concentrations. Point sources were generally larger contributors in the eastern U.S. than in the western U.S. The contributions of on-road mobile emissions were around 5 ppb at most of the cities selected for analysis. Off-road mobile source contributions were around 20 ppb or nearly 30%. Since boundary conditions play an important role in future year ozone levels, it is important to characterize future year boundary conditions accurately. The current implementation of ISAM in CMAQ 5.0.2 requires significant computing resources for ozone source attribution, making it difficult to conduct long-term simulations for large domains. The computing requirements for PM source attribution are even more onerous. CMAQ 5.2 was released after this study was completed, and does not include ISAM. If an efficient version of ISAM becomes available, it could be used in long-term ozone and PM2.5 studies. Implications: Ozone source attribution results provide useful information on important emission source contribution categories and provide some initial guidance on future emission reduction strategies. This study explains a new source apportionment technique, CMAQ-ISAM, and compares it to CAMx OSAT. The techniques have similar results: ozone’s highest source contributor is boundary conditions, followed by point sources, then off-road mobile sources. The current version of ISAM in CMAQ 5.0.2 requires significant computing resources for ozone source attribution, while the computing requirements for PM source attribution are even more onerous. CMAQ 5.2 was released after this study was completed, and does not include ISAM.  相似文献   
78.
The utilization of captured CO2 as a part of the CO2 capture and storage system to produce biopolymers could address current environmental issues such as global warming and depletion of resources. In this study, the effect of feeding strategies of CO2 and valeric acid on cell growth and synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] in Cupriavidus necator was investigated to determine the optimal conditions for microbial growth and biopolymer accumulation. Among the studied CO2 concentrations (1–20 %), microbial growth and poly(3-hydroxybutyrate) accumulation were optimal at 1 % CO2 using a gas mixture at H2:O2:N2 = 7:1:91 % (v/v). When valeric acid was fed together with 1 % CO2, (R)-3-hydroxyvalerate synthesis increased with increasing valeric acid concentration up to 0.1 %, but (R)-3-hydroxybutyrate synthesis was inhibited at >0.05 % valeric acid. Sequential addition of valeric acid (0.05 % at Day 0 followed by 0.025 % at Day 2) showed an increase in 3HV fraction without inhibitory effects on 3HB synthesis during 4 d accumulation period. The resulting P(3HB-co-3HV) with 17–32 mol  % of 3HV is likely to be biocompatible. The optimal concentrations and feeding strategies of CO2 and valeric acid determined in this study for microbial P(3HB-co-3HV) synthesis can be used to produce biocompatible P(3HB-co-3HV).  相似文献   
79.
Black carbon (BC) and total organic carbon (TOC) contents of UK and Norwegian background soils were determined and their relationships with persistent organic pollutants (HCB, PAHs, PCBs, co-planar PCBs, PBDEs and PCDD/Fs) investigated by correlation and regression analyses, to assess their roles in influencing compound partitioning/retention in soils. The 52 soils used were high in TOC (range 54-460 mg/g (mean 256)), while BC only constituted 0.24-1.8% (0.88%) of the TOC. TOC was strongly correlated (p < 0.001) with HCB, PCBs, co-PCBs and PBDEs, but less so with PCDD/Fs (p < 0.05) and PAHs. TOC explained variability in soil content, as follows: HCB, 80%; PCBs, 44%; co-PCBs, 40%; PBDEs, 27%. BC also gave statistically significant correlations with PBDEs (p < 0.001), co-PCBs (p < 0.01) and PCBs, HCB, PCDD/F (p < 0.05); TOC and BC were correlated with each other (p < 0.01). Inferences are made about possible combustion-derived sources, atmospheric transport and air-surface exchange processes for these compounds.  相似文献   
80.
Jung CH  Osako M 《Chemosphere》2007,69(2):279-288
This study aims to identify the thermodynamic behavior of rare metal elements during the melting process of municipal solid waste incineration residues. The fate of several selected rare metal elements was investigated using two approaches: experimental and thermodynamic equilibrium calculation at two actual melting plants. The results revealed that Ag, Bi, Ga, Ge, In, Pd, Sb, Te, and Tl are readily volatilized as chloride and/or gaseous forms and then condensed in melting furnace fly ash. On the other hand, Cr, Ni, Ta, V, and Zr tend to mostly remain in molten slag. Sn is volatilized as SnS (g) under reducing conditions while volatilization is suppressed under oxidizing conditions. Thermodynamically, total volatilization of Mn as MnCl2 (g) occurred with highly available chlorine under oxidizing conditions. However, at the actual plants, only a small proportion was volatilized. As for Co, Mo, and W, no volatilization occurred at the actual plants although the calculations suggest that these elements can form volatile metal chloride and volatilize. Non-equilibrium and heterogeneity of the actual plant melting furnace could explain the discrepancy. This study provided a good qualitative view of the behavior of rare metals in the melting process, but further investigation is required to produce a more accurate simulation and to resolve the discrepancy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号