The spatial and temporal variations of some trace metals in the surface sediments of Cochin Estuary were analyzed along with their geochemical associations to identify the possible sources, bioavailability and the health risks posed by them. The dominance of kaolinite and suggested that clay minerals distribution is influenced by sediment sorting. Total metal analysis revealed enrichment for Cd, Pb and Zn due to anthropogenic activities. The speciation analysis established that notwithstanding the large availability, carbonate as well as organic and sulfides bound fractions showed negligible associations with most of the metals. Hydrous Fe–Mn oxides appeared to play a major role in controlling the fate and transport of these metals in the sediments of Cochin Estuary. Lower contribution of the residual fractions for Cd (21%–26%), Pb (<60%) and Zn (24%–42%) indicated an obvious increase of other geochemical fractions. Risk assessment analysis revealed that regardless of total concentration, none of the analyzed metals were at safe levels in the estuary as appreciable percentages were found to be associated with mobile geochemical forms. The speciation study conspicuously established that the metals originating from non-geogenic sources are largely associated with the labile fractions and hence are more detrimental to the aquatic biota. 相似文献
The phenomenon of Batesian mimicry, where a palatable animal gains protection against predation by resembling an unpalatable model, has been a core interest of evolutionary biologists for 150 years. An extensive range of studies has focused on revealing mechanistic aspects of mimicry (shared education and generalization of predators) and the evolutionary dynamics of mimicry systems (co‐operation vs. conflict) and revealed that protective mimicry is widespread and is important for individual fitness. However, according to our knowledge, there are no case studies where mimicry theories have been applied to conservation of mimetic species. Theoretically, mimicry affects, for example, frequency dependency of predator avoidance learning and human induced mortality. We examined the case of the protected, endangered, nonvenomous smooth snake (Coronella austriaca) that mimics the nonprotected venomous adder (Vipera berus), both of which occur in the Åland archipelago, Finland. To quantify the added predation risk on smooth snakes caused by the rarity of vipers, we calculated risk estimates from experimental data. Resemblance of vipers enhances survival of smooth snakes against bird predation because many predators avoid touching venomous vipers. Mimetic resemblance is however disadvantageous against human predators, who kill venomous vipers and accidentally kill endangered, protected smooth snakes. We found that the effective population size of the adders in Åland is very low relative to its smooth snake mimic (28.93 and 41.35, respectively).Because Batesian mimicry is advantageous for the mimic only if model species exist in sufficiently high numbers, it is likely that the conservation program for smooth snakes will fail if adders continue to be destroyed. Understanding the population consequences of mimetic species may be crucial to the success of endangered species conservation. We suggest that when a Batesian mimic requires protection, conservation planners should not ignore the model species (or co‐mimic in Mullerian mimicry rings) even if it is not itself endangered. Implications of mimicry for Conservation of the endangered smooth snake 相似文献
Following an intensive survey of domestic radon levels in the United Kingdom (UK), the former National Radiological Protection Board (NRPB), now the Radiation Protection Division of the Health Protection Agency (HPA-RPD), established a measurement protocol and promulgated Seasonal Correction Factors applicable to the country as a whole. Radon levels in the domestic built environment are assumed to vary systematically and repeatably during the year, being generally higher in winter. The Seasonal Correction Factors therefore comprise a series of numerical multipliers, which convert a 1-month or 3-month radon concentration measurement, commencing in any month of the year, to an effective annual mean radon concentration. In a recent project undertaken to assess the utility of short-term exposures in quantifying domestic radon levels, a comparative assessment of a number of integrating detector types was undertaken, with radon levels in 34 houses on common geology monitored over a 12-month period using dose-integrating track-etch detectors exposed in pairs (one upstairs, one downstairs) at 1-month and 3-month resolution. Seasonal variability of radon concentrations departed significantly from that expected on the basis of the HPA-RPD Seasonal Correction Factor set, with year-end discontinuities at both 1-month and 3-month measurement resolutions. Following this study, monitoring with electrets was continued in four properties, with weekly radon concentration data now available for a total duration in excess of three and a half years. Analysis of this data has permitted the derivation of reliable local Seasonal Correction Factors. Overall, these are significantly lower than those recommended by HPA-RPD, but are comparable with other results from the UK and from abroad, particularly those that recognise geological diversity and are consequently prepared on a regional rather than a national basis. This finding calls into question the validity of using nationally aggregated Seasonal Correction Factors, especially for shorter exposures, and the universal applicability of these corrections is discussed in detail. 相似文献
Hypotheses of feeding behaviors and community structure are testable with rare direct evidence of trophic interactions in the fossil record (e.g., bite marks). We present evidence of four predation, scavenging, and/or interspecific fighting events involving two large paracrocodylomorphs (=‘rauisuchians’) from the Upper Triassic Chinle Formation (~220–210 Ma). The larger femur preserves a rare history of interactions with multiple actors prior to and after death of this ~8–9-m individual. A large embedded tooth crown and punctures, all of which display reaction tissue formed through healing, record evidence of a failed attack on this individual. The second paracrocodylomorph femur exhibits four unhealed bite marks, indicating the animal either did not survive the attack or was scavenged soon after death. The combination of character states observed (e.g., morphology of the embedded tooth, ‘D’-shaped punctures, evidence of bicarination of the marking teeth, spacing of potentially serial marks) indicates that large phytosaurs were actors in both cases. Our analysis of these specimens demonstrates phytosaurs targeted large paracrocodylomorphs in these Late Triassic ecosystems. Previous distinctions between ‘aquatic’ and ‘terrestrial’ Late Triassic trophic structures were overly simplistic and built upon mistaken paleoecological assumptions; we show they were intimately connected at the highest trophic levels. Our data also support that size cannot be the sole factor in determining trophic status. Furthermore, these marks provide an opportunity to start exploring the seemingly unbalanced terrestrial ecosystems from the Late Triassic of North America, in which large carnivores far outnumber herbivores in terms of both abundance and diversity. 相似文献
The removal of heavy metals from wastewater has become a global challenge, which demands the continuous study of efficient and low-cost treatment alternatives such as adsorption. In this research, the removal of zinc was evaluated using batch adsorption processes with nonconventional materials such as graphene oxide (GO), magnetite (MG), and their composites (GO:MG), formulated with three weight ratios (2:1, 1:1, and 1:2). Graphene was synthesized by the modified Marcano method, using pencil lead graphite as a precursor. MG and the composites were synthesized by chemical coprecipitation of ferrous sulfate and ferric chloride. The materials were characterized by Raman and Fourier transform infrared spectroscopies, scanning electron microscopy, X-ray diffraction, and the Brunauer–Emmett–Teller method to determine the functional groups, microstructural and morphological characteristics, and specific surface area. Batch adsorption tests were carried out to optimize the adsorbent dose and contact time with zinc solutions of 10 ppm. Zinc adsorption reached equilibrium at 2 h, with an optimal dose between 0.25 and 1.0 g/L. The maximum zinc removal efficiencies/adsorption capacities were 98.6%/165.6, 83.4%/47.6, 83.5%/21.9, 72.8%/19.9, and 82.2%/9.25 mg/g using GO, 2GO:1MG, 1GO:1MG, 1GO:2MG, and MG, respectively. Furthermore, the analysis of the isotherm and adsorption kinetics models determined that the adsorption processes using MG and the composites fit the Sips and pseudo-second-order models. 相似文献
Polychlorinated biphenyls (PCBs) contaminate 19% of US Superfund sites and represent a serious risk to human and environmental health. One promising strategy to remediate PCB-contaminated sediments utilizes organohalide-respiring bacteria (OHRB) that dechlorinate PCBs.
However, functional genes that act as biomarkers for PCB dechlorination processes (i.e., reductive dehalogenase genes) are poorly understood. Here, we developed anaerobic sediment microcosms that harbor an OHRB community dominated by the genus Dehalococcoides. During the 430-day microcosm incubation, Dehalococcoides 16S rRNA sequences increased two orders of magnitude to 107 copies/g of sediment, and at the same time, PCB118 decreased by as much as 70%. In addition, the OHRB community dechlorinated a range of penta- and tetra-chlorinated PCB congeners including PCBs 66, 70?+?74?+?76, 95, 90?+?101, and PCB110 without exogenous electron donor. We quantified candidate reductive dehalogenase (RDase) genes over a 430-day incubation period and found rd14, a reductive dehalogenase that belongs to Dehalococcoides mccartyi strain CG5, was enriched to 107 copies/g of sediment. At the same time, pcbA5 was enriched to only 105 copies/g of sediment. A survey for additional RDase genes revealed sequences similar to strain CG5’s rd4 and rd8. In addition to demonstrating the PCB dechlorination potential of native microbial communities in contaminated freshwater sediments, our results suggest candidate functional genes with previously unexplored potential could serve as biomarkers of PCB dechlorination processes.
Environmental Science and Pollution Research - Acrylamide (AA), an industrial monomer, may cause multi-organ toxicity through induction of oxidative stress and inflammation. The antioxidant... 相似文献
Environmental Science and Pollution Research - Global warming is considered as the main environmental stress affecting ecosystems as well as physiological and biochemical characteristics, and... 相似文献