首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   3篇
  国内免费   5篇
安全科学   12篇
废物处理   14篇
环保管理   30篇
综合类   53篇
基础理论   49篇
污染及防治   85篇
评价与监测   14篇
社会与环境   14篇
灾害及防治   1篇
  2023年   2篇
  2022年   1篇
  2021年   8篇
  2020年   8篇
  2019年   4篇
  2018年   11篇
  2017年   13篇
  2016年   9篇
  2015年   9篇
  2014年   7篇
  2013年   16篇
  2012年   17篇
  2011年   20篇
  2010年   15篇
  2009年   15篇
  2008年   16篇
  2007年   21篇
  2006年   9篇
  2005年   15篇
  2004年   8篇
  2003年   8篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   7篇
  1998年   2篇
  1997年   5篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1976年   1篇
  1970年   1篇
  1960年   1篇
  1938年   1篇
排序方式: 共有272条查询结果,搜索用时 46 毫秒
101.
The mechanistic bioaccumulation model OMEGA (Optimal Modeling for Ecotoxicological Applications) is used to estimate accumulation of zinc (Zn), copper (Cu), cadmium (Cd) and lead (Pb) in the earthworm Lumbricus rubellus. Our validation to field accumulation data shows that the model accurately predicts internal cadmium concentrations. In addition, our results show that internal metal concentrations in the earthworm are less than linearly (slope<1) related to the total concentration in soil, while risk assessment procedures often assume the biota-soil accumulation factor (BSAF) to be constant. Although predicted internal concentrations of all metals are generally within a factor 5 compared to field data, incorporation of regulation in the model is necessary to improve predictability of the essential metals such as zinc and copper.  相似文献   
102.
103.
Adsorption of hydrogen sulfide on montmorillonites modified with iron   总被引:7,自引:0,他引:7  
Sodium-rich montmorillonite was modified with iron in order to introduce active centers for hydrogen sulfide adsorption. In the first modification, interlayer sodium cations were exchanged with iron. In another modification, iron oxocations were introduced to the clay surface. The most elaborated modification was based on doping of iron within the interlayer space of aluminum-pillared clay. The modified clay samples were tested as hydrogen sulfide adsorbents. Iron-doped samples showed a significant improvement in the capacity for H2S removal, despite of a noticeable decrease in microporosity compared to the initial pillared clay. The smallest capacity was obtained for the clay modified with iron oxocations. Variations in adsorption capacity are likely due to differences in the chemistry of iron species, degree of their dispersion on the surface, and accessibility of small pores for H2S molecule. The results suggest that on the surface of iron-modified clay hydrogen sulfide reacts with Fe(+3) forming sulfides or it is catalytically oxidized to SO2 on iron (hydro)oxides. Subsequent oxidation may lead to sulfate formation.  相似文献   
104.
Mechanisms of phosphorus solubilisation in a limed soil as a function of pH   总被引:5,自引:0,他引:5  
Phosphorus (P) quantity-intensity relationships are central to the solubility and release of P from soil to water. Relationships between P extractable by 0.5 M NaHCO extractable P (Olsen P; quantity, Q) and P extractable by 0.01 M CaCl(2) (CaCl(2)-P; possible predictor of soil solution or drainage water P; intensity, I) are curvilinear: above a certain Olsen P concentration, CaCl(2)-P becomes much more soluble than when below it. Aluminium-, Fe- and Ca-P forms (extractable by Olsen's reagent) are thought to control P solubility. Thus, our objectives were to identify P forms in equilibrium with CaCl(2)-P via solubility equilibrium experiments, and the behaviour of CaCl(2)-P in relation to Al, Fe and Ca associated P, determined with 31P high power decoupling magic angle spinning nuclear magnetic resonance spectroscopy (31P HPDec/MAS NMR). Results indicated that two Q-I relationships occurred, one for soils above pH 5.8, and the other for soils below pH 5.8. Above pH 5.8, soils were saturated with respect to hydroxyapatite (Ca(5)(PO(4))(3)OH) and undersaturated with respect to beta-tricalcium phosphate (beta-Ca(3)(PO(4))(2)), while log ion-activity products showed that all soils and pHs were either saturated or in equilibrium with variscite (AlPO(4).2H(2)O) or its amorphous analogue. Using 31P HPDec/MAS NMR, Ca-P was best correlated with CaCl(2)-P in soils above pH 5.8, and with Al-P in soils below this pH. This study demonstrates the value of solid-state NMR in conjunction with wet chemical techniques for the study of labile P and P loss from pasture soils with a wide range of managements.  相似文献   
105.
We compared the nesting success of a disturbance-dependent species, the Indigo Bunting ( Passerina cyanea), on different kinds of habitat edges in five sites (225 total nests) in southern Illinois from 1989 to 1993. Nest predation rates along agricultural and abrupt, permanent edges (e.g., wildlife openings, campgrounds) were nearly twice as high as rates along more gradual edges where plant succession was allowed to occur (e.g., treefalls, streamsides, gaps created by selective logging ). Levels of brood parasitism by Brown-headed Cowbirds ( Molothrus ater) varied significantly among sites and years, but not among edge types. Clutch sizes, however, were significantly smaller at agricultural edges where nest predation rates were also high, which suggests either decreased food availability or a population dominated by younger and/or lower-quality ( poor condition) birds. The results of this study illustrate the need to reevaluate management practices (e.g., wildlife openings) that are designed to promote populations of disturbance-dependent wildlife.  相似文献   
106.
107.
Previous publications described the performance of biocovers constructed with a compost layer placed on select areas of a landfill surface characterized by high emissions from March 2004 to April 2005. The biocovers reduced CH4 emissions 10-fold by hydration of underlying clay soils, thus reducing the overall amount of CH4 entering them from below, and by oxidation of a greater portion of that CH4. This paper examines in detail the field observations made on a control cell and a biocover cell from January 1, 2005 to December 31, 2005. Field observations were coupled to a numerical model to contrast the transport and attenuation of CH4 emissions from these two cells. The model partitioned the biocover’s attenuation of CH4 emission into blockage of landfill gas flow from the underlying waste and from biological oxidation of CH4. Model inputs were daily water content and temperature collected at different depths using thermocouples and calibrated TDR probes. Simulations of CH4 transport through the two soil columns depicted lower CH4 emissions from the biocover relative to the control. Simulated CH4 emissions averaged 0.0 g m?2 d?1 in the biocover and 10.25 g m?2 d?1 in the control, while measured values averaged 0.04 g m?2 d?1 in the biocover and 14 g m?2 d?1 in the control. The simulated influx of CH4 into the biocover (2.7 g m?2 d?1) was lower than the simulated value passing into the control cell (29.4 g m?2 d?1), confirming that lower emissions from the biocover were caused by blockage of the gas stream. The simulated average rate of biological oxidation predicted by the model was 19.2 g m?2 d?1 for the control cell as compared to 2.7 g m?2 d?1 biocover. Even though its Vmax was significantly greater, the biocover oxidized less CH4 than the control cell because less CH4 was supplied to it.  相似文献   
108.
109.
Remediation of recalcitrant compounds at sites with high concentrations of volatile organic compounds (VOCs) or nonaqueous‐phase liquids (NAPLs) can present significant technical and financial (long‐term) risk for stakeholders. Until recently, however, sustainability has not been included as a significant factor to be considered in the feasibility and risk evaluation for remediation technologies. The authors present a framework for which sustainability can be incorporated into the remediation selection criteria focusing specifically on off‐gas treatment selection for soil vapor extraction (SVE) remediation technology. SVE is generally considered an old and standard approach to in situ remediation of soils at a contaminated site. The focus on off‐gas treatment technology selection in this article allows for more in‐depth analysis of the feasibility evaluation process and how sustainable practices might influence the process. SVE is more commonly employed for recovery of VOCs from soils than other technologies and generally employs granular activated carbon (GAC), catalytic, or thermal oxidation, or an emerging alternative technology known as cryogenic‐compression and condensation combined with regenerative adsorption (C3–Technology). Of particular challenge to the off‐gas treatment selection process is the potential variety of chemical constituents and concentrations changing over time. Guidance is available regarding selection of off‐gas treatment technology (Air Force Center for Environmental Excellence, 1996; U.S. Environmental Protection Agency, 2006). However, there are common shortcomings of off‐gas treatment technology guidance and applications; practitioners have rarely considered sustainability and environmental impact of off‐gas treatment technology selection. This evaluation includes consideration of environmental sustainability in the selection of off‐gas treatment technologies and a region‐specific (Los Angeles, California) cost per pound and time of remediation comparisons between GAC, thermal oxidation, and C3–Technology. © 2008 Wiley Periodicals, Inc.  相似文献   
110.
In forest soils on calcareous parent material, carbonate is a key component that influences both chemical and physical soil properties and thus fertility and productivity. At low organic carbon contents, it is difficult to distinguish between organic and inorganic carbon, e.g. carbonates, in soils. The common gas-volumetric method to determine carbonate has a number of disadvantages. We hypothesize that a combination of two spectroscopic methods, which account for different forms of carbonate, can be used to model soil carbonate in our region. Fourier transform mid-infrared spectroscopy was combined with X-ray diffraction to develop a model based on partial least squares regression. Results of the gas-volumetric Scheibler method were corrected for the calcite/dolomite ratio. The best model performance was achieved when we combined the two analytical methods using four principal components. The root mean squared error of prediction decreased from 13.07 to 11.57, while full cross-validation explained 94.5 % of the variance of the carbonate content. This is the first time that a combination of the proposed methods has been used to predict carbonate in forest soils, offering a simple method to precisely estimate soil carbonate contents while increasing accuracy in comparison with spectroscopic approaches proposed earlier. This approach has the potential to complement or substitute gas-volumetric methods, specifically in study areas with low soil heterogeneity and similar parent material or in long-term monitoring by consecutive sampling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号