首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   799篇
  免费   6篇
  国内免费   2篇
安全科学   31篇
废物处理   23篇
环保管理   127篇
综合类   319篇
基础理论   125篇
污染及防治   132篇
评价与监测   31篇
社会与环境   19篇
  2019年   9篇
  2018年   10篇
  2017年   13篇
  2016年   12篇
  2015年   20篇
  2014年   21篇
  2013年   38篇
  2012年   22篇
  2011年   23篇
  2010年   23篇
  2009年   27篇
  2008年   35篇
  2007年   23篇
  2006年   33篇
  2005年   22篇
  2004年   15篇
  2003年   17篇
  2002年   28篇
  2001年   11篇
  2000年   21篇
  1999年   18篇
  1998年   6篇
  1996年   6篇
  1995年   9篇
  1994年   7篇
  1993年   8篇
  1991年   7篇
  1990年   6篇
  1984年   6篇
  1982年   8篇
  1967年   7篇
  1966年   6篇
  1963年   9篇
  1961年   7篇
  1959年   6篇
  1958年   8篇
  1957年   5篇
  1956年   10篇
  1955年   12篇
  1954年   10篇
  1939年   10篇
  1938年   8篇
  1937年   5篇
  1936年   5篇
  1933年   6篇
  1932年   6篇
  1929年   5篇
  1927年   5篇
  1926年   5篇
  1914年   5篇
排序方式: 共有807条查询结果,搜索用时 15 毫秒
251.
Identification of critical habitat in estuarine nursery areas is an important conservation and management objective. Habitat can be viewed as a mosaic of both temporally variable environmental features and spatially variable structural features that combine to define optimal habitat. Effective models of juvenile distributions should account for individual movement, as well as the full suite of habitat variability including both spatial and temporal components. We have extended a terrestrial model of small-scale movement patterns to describe habitat choices of an index juvenile fish in an estuarine nursery system. Movement of small juvenile fishes was found to be influenced by both spatial and temporal patterns in habitat quality, and it was a balanced mix of both that resulted in an optimal distribution. Fishes that perceive habitat on a scale much smaller than the scale of spatial heterogeneity may respond to temporal change as a movement cue allowing for more deterministic outcomes at larger scales despite perceptual limitations. These model outcomes suggest a hierarchical approach is best for describing habitat choice in juvenile fishes and this approach will be used in the future to explore individual and population responses to predictable habitat change.  相似文献   
252.
Insect larvae increase in size with several orders of magnitude throughout development making them more conspicuous to visually hunting predators. This change in predation pressure is likely to impose selection on larval anti-predator behaviour and since the risk of detection is likely to decrease in darkness, the night may offer safer foraging opportunities to large individuals. However, forsaking day foraging reduces development rate and could be extra costly if prey are subjected to seasonal time stress. Here we test if size-dependent risk and time constraints on feeding affect the foraging–predation risk trade-off expressed by the use of the diurnal–nocturnal period. We exposed larvae of one seasonal and one non-seasonal butterfly to different levels of seasonal time stress and time for diurnal–nocturnal feeding by rearing them in two photoperiods. In both species, diurnal foraging ceased at large sizes while nocturnal foraging remained constant or increased, thus larvae showed ontogenetic shifts in behaviour. Short night lengths forced small individuals to take higher risks and forage more during daytime, postponing the shift to strict night foraging to later on in development. In the non-seasonal species, seasonal time stress had a small effect on development and the diurnal–nocturnal foraging mode. In contrast, in the seasonal species, time for pupation and the timing of the foraging shift were strongly affected. We argue that a large part of the observed variation in larval diurnal–nocturnal activity and resulting growth rates is explained by changes in the cost/benefit ratio of foraging mediated by size-dependent predation and time stress.  相似文献   
253.
Arthropod assemblages are best predicted by plant species composition   总被引:2,自引:0,他引:2  
Insects and spiders comprise more than two-thirds of the Earth's total species diversity. There is wide concern, however, that the global diversity of arthropods may be declining even more rapidly than the diversity of vertebrates and plants. For adequate conservation planning, ecologists need to understand the driving factors for arthropod communities and devise methods, that provide reliable predictions when resources do not permit exhaustive ground surveys. Which factor most successfully predicts arthropod community structure is still a matter of debate, however. The purpose of this study was to identify the factor best predicting arthropod assemblage composition. We investigated the species composition of seven functionally different arthropod groups (epigeic spiders, grasshoppers, ground beetles, weevils, hoppers, hoverflies, and bees) at 47 sites in The Netherlands comprising a range of seminatural grassland types and one heathland type. We then compared the actual arthropod composition with predictions based on plant species composition, vegetation structure, environmental data, flower richness, and landscape composition. For this we used the recently published method of predictive co-correspondence analysis, and a predictive variant of canonical correspondence analysis, depending on the type of predictor data. Our results demonstrate that local plant species composition is the most effective predictor of arthropod assemblage composition, for all investigated groups. In predicting arthropod assemblages, plant community composition consistently outperforms both vegetation structure and environmental conditions (even when the two are combined), and also performs better than the surrounding landscape. These results run against a common expectation of vegetation structure as the decisive factor. Such expectations, however, have always been biased by the fact that until recently no methods existed that could use an entire (plant) species composition in the explanatory role. Although more recent experimental diversity work has reawakened interest in the role of plant species, these studies still have not used (or have not been able to use) entire species compositions. They only consider diversity measures, both for plant and insect assemblages, which may obscure relationships. The present study demonstrates that the species compositions of insect and plant communities are clearly linked.  相似文献   
254.
A method for measuring ATP, ADP and AMP levels in environmental samples was devised, and applied to seawater and bacterial cell extracts. This procedure is specifically designed for measuring the extremely low concentrations of total adenine nucleotides ([AT]=[ATP]+[ADP]+[AMP]) that are apt to occur in most natural ecosystems (i.e., 10 ng AT ml-1 of sample extract). Although the current assay methodology can be used with purified firefly luciferase reagents, it has been suitably modified to accept crude luciferase preparations as well. ATP, ADP and AMP levels have been measured, and the corresponding energy charge (EC) ratios determined for seawater samples collected off the Southern California coast. The EC ratios ranged from 0.50 to 0.89, with peak values corresponding to the subsurface maxima in ATP and chlorophyll a concentrations, and the minimum values corresponding to the deepest water sampled (1500 m). The measurement of adenylate energy charge ratios in environmental samples can be a useful indicator of mean community metabolic activity and potential for cell growth.  相似文献   
255.
    
Among the important alternatives for land conservation is the US Conservation Reserve Program (CRP) that celebrated its 30th anniversary in 2015. This paper explores how landowners decide on alternative land-use choices made available by the expiration of CRP contracts in Kansas. The study uses survey data and multinomial Logit models to predict land-use choices. Two models were tested. The first model does not incorporate variables concerning farmer perceptions and attitudes about land-use choices, while the second model does. The results show that CRP re-enrollment depends on factors, such as years of experience in cropping and percent of cropland irrigated. However, when perception variables are added, the models become more robust in explaining other land choice alternatives. The results suggest that as the perception of unfairness of more inflexible environmental policy rises, these farmers may be more likely to re-enroll their marginal land in the CRP program.  相似文献   
256.
Title III of the 1990 Clean Air Act Amendments designated methanol as a pollutant to be regulated. The U.S. Environmental Protection Agency (EPA), through a contract with Research Triangle Institute, has developed a method for measuring methanol emissions from stationary sources. The methanol sampling train (MST) consists of a glass-lined heated probe, two condensate knockout traps, and three sorbent cartridges packed with Anasorb 747. Samples are desorbed with a 1:1 mixture of carbon disulfide (CS2) and N,N-dimethylformamide (DMF). Condensate water and CS2/ DMF samples are analyzed by gas chromatography with flame ionization detection. The MST has a practical quantitation limit of approximately 3 ppm for a 20-L sample. Samples were shown to be stable for at least two weeks after collection. Field tests of the MST and the National Council of the Paper Industry for Air and Stream Improvement (NCASI) methanol sampling method were conducted at two pulp and paper mills. Sampling and analysis procedures followed EPA Method 301 requirements. The sampling location for the first field test was the inlet vent to a softwood bleach plant scrubber, where the methanol concentration was approximately 30 ppm. The mean recovery of spike was 108.3% for the MST method and 81.6% for the NCASI method. Although neither method showed significant bias at the 95% confidence level, the between-methods bias was significantly different. A second field test was conducted at a vent from a black liquor oxidation tank where the methanol concentration was approximately 350 ppm. Mean spike recoveries were 96.6 and 94.2% for the MST and NCASI methods, respectively. The biases of the two methods and the between-methods bias were not significantly different for the second field test.  相似文献   
257.
Based on exhaust gas analyses from the combustion of five different types of gasoline in a passenger car operated on a chassis dynamometer, box model simulations of the irradiation of exhaust/NOx/air mixtures using an established chemical mechanism for a standardized photosmog scenario were performed. The fuel matrix used covered wide fractional ranges for paraffinic, olefinic, and aromatic hydrocarbons. Two fuels also contained methyl tertiary butyl ether (MTBE). The different O3 profiles calculated for each run were compared and interpreted. The O3 levels obtained were strongly influenced by the exhaust gas concentrations of aromatic and olefinic hydrocarbons. The higher exhaust content of these compounds caused higher O3 production in the smog system investigated. The conclusion of the present study is that the composition of gasoline cannot be taken directly for the estimation of the emissions' O3 creation potential from its combustion. Variation of the dilution in the different calculations showed evidence for an additional influence of transport effects. Accordingly, further detailed exhaust gas analyses followed by more complex modeling studies are necessary for a proper characterization of the relationship between fuel blend and gasoline combustion products.  相似文献   
258.
Abstract

A high‐intensity short‐wavelength UV light system was studied for its ability to degrade the pesticides carbofuran, fenamiphos sulfoxide (nemacur sulfoxide), and propazine in aqueous solutions. Half‐lives, rate constants, and breakdown products were determined for all chemicals. The presence of hydrogen peroxide, an oxidant and potential source of hydroxyl radicals, had no effect on the rate of breakdown of any of the chemicals investigated. Short‐wavelength UV light appears to be solely responsible for the observed pesticide breakdown. The breakdown of all three pesticides followed first order kinetics. Carbofuran, nemacur sulfoxide, and propazine had half lives of 3.9, 1.1, and 3.9 minutes, respectively. Breakdown product analysis was performed using capillary gas chromatography/mass spectrometry.  相似文献   
259.
Christen V  Fent K 《Chemosphere》2012,87(4):423-434
Engineered silica nanoparticles (SiO2-NPs) find widespread application and may lead to exposure of humans and the environment. Here we compare the effects of SiO2-NPs and SiO2-NPs doped with silver (SiO2-Ag-NPs) on survival and cellular function of human liver cells (Huh7) and Pimephales promelas (fathead minnow) fibroblast cells (FMH). In Huh7 cells we investigate effects on the endoplasmatic reticulum (ER), including ER stress, and interactions of nanoparticles (NPs) with metabolizing enzymes and efflux transporters. The NPs formed agglomerates/aggregates in cell culture media as revealed by SEM and TEM. SiO2 and SiO2-1% Ag-NPs were taken up into cells as demonstrated by agglomerates occurring in vesicular-like structures or freely dispersed in the cytosol. Cytotoxicity was more pronounced in Huh7 than in FMH cells, and increased with silver content in silver-doped NPs. Dissolved silver was the most significant factor for cytotoxicity. At toxic and non-cytotoxic concentrations SiO2-NPs and SiO2-1% Ag-NPs induced perturbations in the function of ER. In Huh7 cells NPs induced the unfolded protein response (UPR), or ER stress response, as demonstrated in induced expression of BiP and splicing of XBP1 mRNA, two selective markers of ER stress. Additionally, SiO2-1% Ag-NPs and AgNO3 induced reactive oxygen species. Pre-treatment of Huh7 cells with SiO2-1% Ag-NPs followed by exposure to the inducer benzo(a)pyrene caused a significant reduced induction of CYP1A activity. NPs did not alter the activity of ABC transporters. These data demonstrate for the first time that SiO2-NPs and SiO2-1% Ag-NPs result in perturbations of the ER leading to the ER stress response. This represents a novel and significant cellular signalling pathway contributing to the cytotoxicity of NPs.  相似文献   
260.
The fate and transport of antibiotics in natural water systems is controlled in part by interactions with nanometer (10−9 m) metal oxide particles. Experiments were performed by mixing solutions of ampicillin (AMP), a common, penicillin-class human and veterinary antibiotic, with 25 nm-TiO2 (anatase) nanoparticles at different pH conditions. Both sorption and degradation of AMP were observed in the AMP-nanoparticle solutions. For AMP concentrations from ∼3 μM to 2.9 mM the overall AMP removal from solution can be described by linear isotherms with removal coefficients (Kr) of 3028 (±267) L kg−1 at pH 2, 11,533 (±823) L kg−1 at pH 4, 12,712 (±672) L kg−1 at pH 6, and 1941 (±342) L kg−1 at pH 8. Mass spectral analysis of AMP solutions after removal of the solid nanoparticles yielded ions that indicate the presence of peniclloic acid, penilloic acid and related de-ammoniated by-products as possible compounds resulting from the degradation of AMP at the TiO2 surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号