首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   868篇
  免费   12篇
  国内免费   13篇
安全科学   39篇
废物处理   42篇
环保管理   243篇
综合类   92篇
基础理论   174篇
污染及防治   212篇
评价与监测   56篇
社会与环境   33篇
灾害及防治   2篇
  2023年   4篇
  2022年   5篇
  2021年   4篇
  2020年   10篇
  2019年   8篇
  2018年   10篇
  2017年   18篇
  2016年   15篇
  2015年   17篇
  2014年   21篇
  2013年   100篇
  2012年   22篇
  2011年   51篇
  2010年   31篇
  2009年   37篇
  2008年   46篇
  2007年   46篇
  2006年   50篇
  2005年   23篇
  2004年   27篇
  2003年   41篇
  2002年   33篇
  2001年   19篇
  2000年   12篇
  1999年   9篇
  1998年   9篇
  1997年   10篇
  1996年   15篇
  1995年   8篇
  1994年   10篇
  1993年   8篇
  1992年   8篇
  1991年   6篇
  1990年   5篇
  1989年   7篇
  1988年   5篇
  1987年   10篇
  1986年   8篇
  1985年   10篇
  1984年   15篇
  1983年   15篇
  1982年   14篇
  1981年   20篇
  1980年   6篇
  1979年   7篇
  1978年   7篇
  1977年   5篇
  1974年   7篇
  1973年   4篇
  1970年   3篇
排序方式: 共有893条查询结果,搜索用时 31 毫秒
51.
The land application of aged chortetracycle (CTC) and tylosin-containing swine manure was investigated to determine associated impacts to soil microbial respiration, nutrient (phosphorus, ammonium, nitrate) cycling, and soil microbial community structure under laboratory conditions. Two silty clay loam soils common to southeastern South Dakota were used. Aerobic soil respiration results using batch reactors containing a soil-manure mixture showed that interactions between soil, native soil microbial populations, and antimicrobials influenced CO(2) generation. The aged tylosin treatment resulted in the greatest degree of CO(2) inhibition, while the aged CTC treatment was similar to the no-antimicrobial treatment. For soil columns in which manure was applied at a one-time agronomic loading rate, there was no significant difference in soil-P behavior between either aged CTC or tylosin and the no-antimicrobial treatment. For soil-nitrogen (ammonium and nitrate), the aged CTC treatment resulted in rapid ammonium accumulation at the deeper 40cm soil column depth, while nitrate production was minimal. The aged CTC treatment microbial community structure was different than the no-antimicrobial treatment, where amines/amide and carbohydrate chemical guilds utilization profile were low. The aged tylosin treatment also resulted in ammonium accumulation at 40 cm column depth, however nitrate accumulation also occurred concurrently at 10 cm. The microbial community structure for the aged tylosin was also significantly different than the no-antimicrobial treatment, with a higher degree of amines/amides and carbohydrate chemical guild utilization compared to the no-antimicrobial treatment. Study results suggest that land application of CTC and tylosin-containing manure appears to fundamentally change microbial-mediated nitrogen behavior within soil A horizons.  相似文献   
52.
Cobalt is an essential element, but at high concentrations it is toxic. In addition to its well-known function as an integral part of cobalamin (vitamin B12), cobalt has recently been shown to be a mimetic of hypoxia and a stimulator of the production of reactive oxygen species. The present study investigated the responses of goldfish, Carassius auratus, to 96 h exposure to 50, 100 or 150 mg L−1 Co2+ in aquarium water (administered as CoCl2). The concentrations of cobalt in aquaria did not change during fish exposure. Exposure to cobalt resulted in increased levels of lipid peroxides in brain (a 111% increase after exposure to 150 mg L−1 Co2+) and liver (30-66% increases after exposure to 50-150 mg L−1 Co2+), whereas the content of protein carbonyls rose only in kidney (by 112%) after exposure to 150 mg L−1 cobalt. Low molecular mass thiols were depleted by 24-41% in brain in response to cobalt treatment. The activities of primary antioxidant enzymes, superoxide dismutase (SOD) and catalase, were substantially suppressed in brain and liver as a result of Co2+ exposure, whereas in kidney catalase activity was unchanged and SOD activity increased. The activities of glutathione-related enzymes, glutathione peroxidase and glutathione-S-transferase, did not change as a result of cobalt exposure, but glutathione reductase activity increased by ∼40% and ∼70% in brain and kidney, respectively. Taken together, these data show that exposure of fish to Co2+ ions results in the development of oxidative stress and the activation of defense systems in different goldfish tissues.  相似文献   
53.
Particulate matter < or =10 microm (PM10) emissions due to wind erosion can vary dramatically with changing surface conditions. Crust formation, mechanical disturbance, soil texture, moisture, and chemical content of the soil can affect the amount of dust emitted during a wind event. A refined method of quantifying windblown dust emissions was applied at Mono Lake, CA, to account for changing surface conditions. This method used a combination of real-time sand flux monitoring, ambient PM10 monitoring, and dispersion modeling to estimate dust emissions and their downwind impact. The method identified periods with high emissions and periods when the surface was stable (no sand flux), even though winds may have been high. A network of 25 Cox sand catchers (CSCs) was used to measure the mass of saltating particles to estimate sand flux rates across a 2-km2 area. Two electronic sensors (Sensits) were used to time-resolve the CSC sand mass to estimate hourly sand flux rates, and a perimeter tapered element oscillating microbalance (TEOM) monitor measured hourly PM10 concentrations. Hourly sand flux rates were related by dispersion modeling to hourly PM10 concentrations to back-calculate the ratio of vertical PM10 flux to horizontal sand flux (K-factors). Geometric mean K-factor values (K(f)) were found to change seasonally, ranging from 1.3 x 10(-5) to 5.1 x 10(-5) for sand flux measured at 15 cm above the surface (q15). Hourly PM10 emissions, F, were calculated by applying seasonal K-factors to sand flux measurements (F = K(f) x q15). The maximum hourly PM10 emission rate from the study area was 76 g/m2 x hr (10-m wind speed = 23.5 m/sec). Maximum daily PM10 emissions were estimated at 450 g/m2 x day, and annual emissions at 1095 g/m2 x yr. Hourly PM10 emissions were used by the U.S. Environmental Protection Agency (EPA) guideline AERMOD dispersion model to estimate downwind ambient impacts. Model predictions compared well with monitor concentrations, with hourly PM10 ranging from 16 to over 60,000 microg/m3 (slope = 0.89, R2 = 0.77).  相似文献   
54.
This study investigates the two‐dimensional transport of nanoscale iron particles (NIP) and lactate‐modified NIP (LMNIP) in homogeneous and heterogeneous porous media under typical pressurized groundwater flow conditions. A two‐dimensional bench‐scale test setup was developed and a series of experiments was conducted simulating homogeneous sand profile and two‐layer profile with two different sands. NIP and LMNIP at a concentration of 4 g/L were prepared in electrolyte simulating groundwater conditions and were injected at the inlet of the test setup under different pressure gradients (0.5. 0.8, 1, and 2 pounds per square inch). During the testing, effluent was collected and its volume and nanoiron concentrations were measured. At the end of the testing, soil cores were obtained at different distances from the inlet and were used to measure nanoiron concentrations and magnetic susceptibility values. Results showed that the transport of NIP and LMNIP was enhanced by increased pressure gradient. LMNIP transport occurred more uniformly as compared to bare NIP. The iron concentrations decreased with distance from the inlet to the outlet and increased from the top to the bottom of the test cell. The data indicate that, as the particles were transported, they underwent aggregation and sedimentation, which resulted in the observed non‐uniform spatial distribution of iron. The NIP and LMNIP transported through the high‐porosity and high‐permeability soil layer in the heterogeneous soil profile, implying that the transport occurred predominantly along the path of least resistance for the flow. Magnetic susceptibility values are found to have good correlation with the iron content in the soil and are helpful to characterize the transport of NIP and LMNIP. Overall, this study shows that the non‐uniform distribution of NIP and LMNIP occurs under two‐dimensional transport conditions and the soil heterogeneities can significantly impact the transport of NIP and LMNIP. The design of field delivery systems should consider such conditions and optimize the pressurized injection systems. © 2011 Wiley Periodicals, Inc.  相似文献   
55.
Historically, many watershed studies have been based on using the streamflow flux, typically from a single gauge at the basin's outlet, to support calibration. In this setting, there is great potential for equifinality of parameters during the optimization process, especially for parameters that are not directly related to streamflow. Therefore, some of the optimal parameter values achieved during the autocalibration process may be physically unrealistic. In recent decades a vast array of data from land surface models and remote sensing platforms can help to constrain hydrologic fluxes such as evapotranspiration (ET). While the spatial resolution of these ancillary datasets varies, the continuous spatial coverage of these gridded datasets provides flux measurements across the entire basin, in stark contrast to point‐based streamflow data. This study uses Global Land Evaporation: the Amsterdam Model data to constrain Soil and Water Assessment Tool parameter values associated with ET to a more physically realistic range. The study area is the Little Washita River Experimental Watershed, in southern Oklahoma. Traditional objective metrics such as the Nash‐Sutcliffe coefficients record no performance improvement after application of this method. However, there is a dramatic increase in the number of days with receding flow where simulations match observed streamflow.  相似文献   
56.
Obtaining lines of evidence indicating that contamination in sediment environments is degrading and being transformed to less toxic forms is an important component of building support for a monitored natural recovery remedy for contaminated sediments. This project was a field demonstration of manufactured gas plant contaminant degradation in river sediments using metabolic gas flux and was performed in an urban area section of a river in northeastern Indiana. CO2 sorbent traps were deployed to measure CO2 flux from the river sediments. Sediment samples were collected and analyzed for polycyclic aromatic hydrocarbon (PAH) concentrations and for microbial community composition using molecular techniques. The results showed that the deployment was successful, measuring CO2 flux at all sediment locations and demonstrating that microbial contaminant degrading activity was occurring in the sediments. Radio carbon dating showed a significant portion of the CO2 being generated (approximately 19–27 percent) was the result of fossil fuel degradation. Molecular results showed that the microbial community consisted of phylotypes known to be associated with monocyclic aromatic and PAH degradation. ©2017 Wiley Periodicals, Inc.  相似文献   
57.
Aircraft emissions affect air quality on scales from local to global. More than 20% of the jet fuel used in the U.S. is consumed by military aircraft, and emissions from this source are facing increasingly stringent environmental regulations, so improved methods for quickly and accurately determining emissions from existing and new engines are needed. This paper reports results of a study to advance the methods used for detailed characterization of military aircraft emissions, and provides emission factors for two aircraft: the F-15 fighter and the C-130 cargo plane. The measurements involved outdoor ground-level sampling downstream behind operational military aircraft. This permits rapid change-out of the aircraft so that engines can be tested quickly on operational aircraft. Measurements were made at throttle settings from idle to afterburner using a simple extractive probe in the dilute exhaust. Emission factors determined using this approach agree very well with those from the traditional method of extractive sampling at the exhaust exit. Emission factors are reported for CO2, CO, NO, NOx, and more than 60 hazardous and/or reactive organic gases. Particle size, mass and composition also were measured and are being reported separately. Comparison of the emissions of nine hazardous air pollutants from these two engines with emissions from nine other aircraft engines is discussed.  相似文献   
58.
The high-molecular weight water-soluble organic compounds present in atmospheric aerosols underwent functional-group characterization using liquid chromatography tandem mass spectrometry (LC-MS/MS), with a focus on understanding the chemical structure and origins of humic-like substances (HULIS) in the atmosphere. Aerosol samples were obtained from several locations in North America at times when primary sources contributing to organic aerosol were well-characterized: Riverside, CA, Fresno, CA, urban and peripheral Mexico City, Atlanta, GA, and Bondville, IL. Chemical analysis targeted identification and quantification of functional groups, such as aliphatic, aromatic, and bulk carboxylic acids, organosulfates, and carbohydrate-like substances that comprise species with molecular weights (MW) 200–600 amu. Measured high-MW functional groups were compared to modeled primary sources with the purpose of identifying associations between aerosol sources, high-MW aerosol species, and HULIS. Mobile source emissions were linked to high-molecular weight carboxylic acids, especially aromatic acids, biomass burning was associated with carboxylic acids and carbohydrate-like substances, and secondary organic aerosol (SOA) correlated well with the total amount of HULIS measured, whereas organosulfates showed no correlation with aerosol sources and exhibited unique spatial trends. These results suggested the importance of motor vehicles, biomass burning, and SOA as important sources of precursors to HULIS. Structural characteristics of atmospheric HULIS were compared to terrestrial humic and fulvic acids and revealed striking similarities in chemical structure, with the exception of organosulfates which were unique to atmospheric HULIS.  相似文献   
59.
Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p < 0.05). Using this relation, the modeled lake area extent from 1985 to 2007 showed no long-term trends. In addition, high-resolution aerial photography, bathymetric surveys, water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA.  相似文献   
60.
Vast areas of arable land have been retired from crop production and “rehabilitated” to improved system states through landowner incentive programs in the United States (e.g., Conservation and Wetland Reserve Programs), as well as Europe (i.e., Agri-Environment Schemes). Our review of studies conducted on invasion of rehabilitated agricultural production systems by nontarget species elucidates several factors that may increase the vulnerability of these systems to invasion. These systems often exist in highly fragmented and agriculturally dominated landscapes, where propagule sources of target species for colonization may be limited, and are established under conditions where legacies of past disturbance persist and prevent target species from persisting. Furthermore, rehabilitation approaches often do not include or successfully attain all target species or historical ecological processes (e.g., hydrology, grazing, and/or fire cycles) key to resisting invasion. Uncertainty surrounds ways in which nontarget species may compromise long term goals of improving biodiversity and ecosystem services through rehabilitation efforts on former agricultural production lands. This review demonstrates that more studies are needed on the extent and ecological impacts of nontarget species as related to the goals of rehabilitation efforts to secure current and future environmental benefits arising from this widespread conservation practice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号