Lead concentrations in blood and scalp hair of 200 school boys, aged 6-8 years, were measured by electrothermal atomic absorption spectrometry. The mean blood-Pb concentration was 6.8 microg dl(-1) and the mean hair-Pb concentration was 9.7 microg g(-1) (dry weight). These values are well within the normal range for the respective tissues, indicating that the children studied are presently at relatively low risk from environmental lead pollution. A correlation analysis carried out on the data failed to show any statistically significant correlation (r = 0.13, p < 0.05) between the blood-Pb and hair-Pb concentrations. 相似文献
As the digital economy develops rapidly and the network information technology advances, new development models represented by the network economy have emerged, which have a crucial impact on green economic growth. However, the relevant previous studies lacked the role of analyzing the direct and indirect effects of internet development on green economic growth at the prefecture-level city level. For this purpose, this paper aims to examine the intrinsic mechanism of the impact of internet development on green economic growth and provide empirical support for cities and regions in China to increase internet construction. Furthermore, the mixed model (EBM), which includes both radial and non-radial distance functions, is applied to calculate the green economic growth index. Fixed effect model and mediation effect model are also employed to test influence mechanisms of the internet development on green economic growth using panel data of 269 prefecture-level cities in China from 2004 to 2019. The statistical results reveal that internet development has contributed significantly to green economic growth. When the internet development level increases by 1 unit, the green economic growth level increases by an average of 5.0372 units. However, regional heterogeneity is evident between internet development and green economic growth, that is, the promoting effect of internet development on green economic growth is gradually enhanced from the eastern region to the western region. We also find that internet development guides industrial structure upgrading improves environmental quality and accelerates enterprise innovation, which indirectly contributes to green economic growth. And internet development mainly achieves green economic growth through enterprise innovation. Based on the above findings, we concluded that policymakers should not only strengthen the guiding role of social actors to promote the stable development of the internet industry, but also foster the construction of the three models of “internet+industry integration,” “internet+environmental governance,” and “internet+enterprise innovation” to promote green economic growth.
We have studied the genotoxic and apoptotic potential of ferric oxide nanoparticles(Fe_2O_3-NPs) in Raphanus sativus(radish).Fe_2O_3-NPs retarded the root length and seed germination in radish.Ultrathin sections of treated roots showed subcellular localization of Fe_2O_3-NPs,along with the appearance of damaged mitochondria and excessive vacuolization.Flow cytometric analysis of Fe_2O_3-NPs(1.0 mg/m L) treated groups exhibited 219.5%,161%,120.4% and 161.4% increase in intracellular reactive oxygen species(ROS),mitochondrial membrane potential(ΔΨm),nitric oxide(NO) and Ca2+influx in radish protoplasts.A concentration dependent increase in the antioxidative enzymes glutathione(GSH),catalase(CAT),superoxide dismutase(SOD) and lipid peroxidation(LPO) has been recorded.Comet assay showed a concentration dependent increase in deoxyribonucleic acid(DNA) strand breaks in Fe_2O_3-NPs treated groups.Cell cycle analysis revealed 88.4% of cells in sub-G1 apoptotic phase,suggesting cell death in Fe_2O_3-NPs(2.0 mg/m L) treated group.Taking together,the genotoxicity induced by Fe_2O_3-NPs highlights the importance of environmental risk associated with improper disposal of nanoparticles(NPs) and radish can serve as a good indicator for measuring the phytotoxicity of NPs grown in NP-polluted environment. 相似文献
Drought in the northern part of Cyprus has become a recurrent phenomenon. In the last few decades, Cyprus has experienced significantly severe drought events occurring periodically, and this trend is now continuing. With rainfall distribution varying considerably across the region and frequent drought conditions, the water resources, agriculture, economy and the environment have been adversely affected. This study aims to investigate spatial–temporal characteristic of drought using Standardized Precipitation Index (SPI) at multiple timescales (3, 6 and 12 months). Monthly time series of 36 years (1977–2013) rainfall data from nine weather stations are used to derive SPI values. Based on different drought categories, this study focuses on propagation of drought from one timescale to another and estimating critical rainfall values during moderate, severe and extreme drought conditions. The analysis revealed that there is a strong correlation among different timescales in detecting drought events. On average, 79 and 78% of 3-month timescale drought propagated into 6- and 12-month drought events, respectively, while 90% of 6-month timescale drought events propagated into 12-month drought events. The derived critical rainfall value for extreme droughts over a 12-month timescale was less than 255 mm/year in the town of Alsancak, while for Guzelyurt, a major citrus growing city, this figure was less than 135 mm/year. The results are validated through drought events detected at various regions of the Mediterranean basin and local flood occurrences during the wet periods and decline in water tables at drought seasons. 相似文献
Environmental Chemistry Letters - Biodiesel is a sustainable alternative to petroleum diesel. The main bottlenecks in the commercialization of biodiesel are production costs and suitable industrial... 相似文献
Environmental Science and Pollution Research - Coronavirus refers to a group of widespread viruses. The name refers to the specific morphology of these viruses because their spikes look like a... 相似文献
Climate change influences the agricultural sector by reducing available water resources, thereby influencing income, consumer and producer surplus, and crop prices. So, it is necessary to have a comprehensive integrated method to measure the effects of these changes on natural resources and social conditions. The present study aims to use the positive mathematical programming method to discover the trend and conditions of groundwater resources, agricultural water use, food security, and economic welfare of the agricultural sector in Iran. To this end, data for the period 2000–2015 was used under four different scenarios of normal climate change, climate change, climate variability, and concurrent climate change The results showed that the mean agricultural water use will amount to 35,103.6, 26,533.8, 35,216, and 26,510.7 million m3 and the mean decline in the reserves of aquifers will amount to 4422.22, 11,165.6, 4438.25, and 11,267.4 million m3 under the scenarios, respectively. With respect to food security, the net farm revenue will be 314,560, 248,753, 315,427, and 248,574 billion IRR, respectively. The mean crop price per ton will reach 905.3, 1141.8, 904, and 1142.8 million IRR, respectively. The mean consumer surplus will be 172,107.7, 166,450, 172,024, and 166,403 billion IRR and the mean producer surplus will be 419,959.2, 395,380, 419,751, and 395,204 billion IRR, respectively. Based on the results, to reduce the adverse impacts of climate change on different studied aspects, it is necessary to change policymaking in the water and agricultural sectors, especially regarding the shift from traditional agricultural water allocation to its market-based allocation and to change planting pattern.
Environmental Science and Pollution Research - This study investigated the seasonal and temporal variations in the extent and source of physiochemical and toxic trace elements in the Lakhodair... 相似文献
Complex mountainous environments such as Himalayas are highly susceptibility to natural hazards particular those that are triggered by the action of water such as floods, soil erosion, mass movements and siltation of the hydro-electric power dams. Among all the natural hazards, soil erosion is the most implicit and the devastating hazard affecting the life and property of the millions of people living in these regions. Hence to review and devise strategies to reduce the adverse impacts of soil erosion is of utmost importance to the planners of watershed management programs in these regions. This paper demonstrates the use of satellite based remote sensing data coupled with the observational field data in a multi-criteria analytical (MCA) framework to estimate the soil erosion susceptibility of the sub-watersheds of the Rembiara basin falling in the western Himalaya, using geographical information system (GIS). In this paper, watershed morphometry and land cover are used as an inputs to the MCA framework to prioritize the sub-watersheds of this basin on the basis of their different susceptibilities to soil erosion. Methodology included the derivation of a set of drainage and land cover parameters that act as the indicators of erosion susceptibility. Further the output from the MCA resulted in the categorization of the sub-watersheds into low, medium, high and very high erosion susceptibility classes. A detailed prioritization map for the susceptible sub-watersheds based on the combined role of land cover and morphometry is finally presented. Besides, maps identifying the susceptible sub-watersheds based on morphometry and land cover only are also presented. The results of this study are part of the watershed management program in the study area and are directed to instigate appropriate measures to alleviate the soil erosion in the study area. 相似文献