首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   0篇
  国内免费   7篇
安全科学   7篇
废物处理   19篇
环保管理   25篇
综合类   26篇
基础理论   39篇
污染及防治   60篇
评价与监测   17篇
社会与环境   6篇
灾害及防治   2篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   7篇
  2017年   4篇
  2016年   5篇
  2015年   2篇
  2014年   7篇
  2013年   23篇
  2012年   19篇
  2011年   18篇
  2010年   6篇
  2009年   12篇
  2008年   16篇
  2007年   20篇
  2006年   10篇
  2005年   11篇
  2004年   10篇
  2003年   6篇
  2002年   5篇
  2001年   3篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1988年   1篇
  1981年   1篇
排序方式: 共有201条查询结果,搜索用时 31 毫秒
151.
Abstract: Water resources planning and management efficacy is subject to capturing inherent uncertainties stemming from climatic and hydrological inputs and models. Streamflow forecasts, critical in reservoir operation and water allocation decision making, fundamentally contain uncertainties arising from assumed initial conditions, model structure, and modeled processes. Accounting for these propagating uncertainties remains a formidable challenge. Recent enhancements in climate forecasting skill and hydrological modeling serve as an impetus for further pursuing models and model combinations capable of delivering improved streamflow forecasts. However, little consideration has been given to methodologies that include coupling both multiple climate and multiple hydrological models, increasing the pool of streamflow forecast ensemble members and accounting for cumulative sources of uncertainty. The framework presented here proposes integration and offline coupling of global climate models (GCMs), multiple regional climate models, and numerous water balance models to improve streamflow forecasting through generation of ensemble forecasts. For demonstration purposes, the framework is imposed on the Jaguaribe basin in northeastern Brazil for a hindcast of 1974‐1996 monthly streamflow. The ECHAM 4.5 and the NCEP/MRF9 GCMs and regional models, including dynamical and statistical models, are integrated with the ABCD and Soil Moisture Accounting Procedure water balance models. Precipitation hindcasts from the GCMs are downscaled via the regional models and fed into the water balance models, producing streamflow hindcasts. Multi‐model ensemble combination techniques include pooling, linear regression weighting, and a kernel density estimator to evaluate streamflow hindcasts; the latter technique exhibits superior skill compared with any single coupled model ensemble hindcast.  相似文献   
152.
Hyun S  Ahn MY  Zimmerman AR  Kim M  Kim JG 《Chemosphere》2008,71(9):1646-1653
The hydraulic properties, such as hydraulic conductivity and water retention, of aged diesel-contaminated and bioremediated soils were examined and implications of the hydraulic properties for assessing bioremediation performance of soils were proposed. Bioremediation of diesel-contaminated soil was performed over 80 d using three treatments; (I) no nutrient added, column-packed soil, (II) nutrient added, column-packed soil, and (III) nutrient added, loosen soil. Diesel reduction in treatment I soil (control soil) was negligible while treatment III showed the greatest extent of diesel biodegradation. All treatments showed greatest rates of diesel biodegradation during the first 20 d, followed by a much retarded biodegradation rate in the remaining incubation period. Reduction of the degradation rate due to entrained diesel within inaccessible soil pores was hypothesized and tested by measuring the hydraulic properties of two column-packed soils (treatments I and II). The hydraulic conductivity of treatment II soil (nutrient added) was consistently above that of treatment I soil (no nutrient added) at pressure heads between 0 and 15 cm. In addition, the water retention of treatment II soil was greater at pressure heads <100 cm (equivalent to pore size of >30 microm), suggesting that biodegradative removal of hydrocarbons results in enhanced wettability of larger soil pores. However, water retention was not significantly different for control and biodegraded soils at pressure heads >100 cm, where smaller size soil pores were responsible for the water retention, indicating that diesel remained in smaller soil pores (e.g., <30 microm). Both incubation kinetics and hydraulic measurements suggest that hydrocarbons located in small pores with limited microbe accessibility may be recalcitrant to bioremediation.  相似文献   
153.
Study of harmful algal blooms in a eutrophic pond, Bangladesh   总被引:2,自引:0,他引:2  
The purpose of this research was to analyze the underlying mechanisms and contributing factors related to the seasonal dynamic of harmful algal blooms in a shallow eutrophic pond, Bangladesh during September 2005–July 2006. Two conspicuous events were noted simultaneously throughout the study period: high concentration of phosphate–phosphorus (>3.03; SD 1.29 mg l???1) and permanent cyanobacterial blooms {>3,981.88 × 103 cells l???1 (SD 508.73)}. Cyanobacterial blooms were characterized by three abundance phases, each of which was associated with different ecological processes. High nitrate–nitrogen (>2.35; SD 0.83 mg l???1), for example, was associated with high cyanobacterial abundance, while low nitrate–nitrogen (0.36; SD 0.2 mg l???1) was recorded during moderate abundance phase. Extremely low NO3–N/PO4–P ratio (>3.55, SD 2.31) was recorded, and all blooming taxa were negatively correlated with this ratio. Cyanobacterial blooms were positively correlated with temperature (r?=?0.345) and pH (0.833; p?=?0.05) and negatively correlated with transparency (r?=???0.956; p?=?0.01). Although Anabaena showed similar relationship with water quality parameters as cyanobacteria, the co-dominant Microcystis exhibited negative relationship with temperature (r?=???0.386) and nitrate–nitrogen (r?=???0.172). This was attributed to excessive growth of Anabaena that suppressed Microcystis’s growth. Planktothrix was the third most dominant taxa, while Euglena was regarded as opportunistic.  相似文献   
154.
A comprehensive monitoring program was conducted during 2005-2007 to investigate seasonal variations of hydrologic stability and water quality in the Yeongsan Reservoir (YSR), located at the downstream end of the Yeongsan River, Korea. A principal component analysis (PCA) was performed to identify factors dominating the seasonal water quality variation from a large suite of measured data--11 physico-chemical parameters from 48 sampling sites. The results showed that three principal components explained approximately 62% of spatio-seasonal water quality variation, which are related to stratifications, pollutant loadings and resultant eutrophication, and the advective mixing process during the episodic rainfall-runoff events. A comparison was then made between YSR and an upstream freshwater reservoir (Damyang Reservoir, DYR) in the same river basin during an autumn season. It was found that the saline stratification and pollutant input from the upstream contributed to greater concentrations of nutrients and organic matter in YSR compared to DYR. In YSR, saline stratification in combination with thermal stratification was a dominant cause of the longer period (for two consecutive seasons) of hypoxic conditions at the reservoir bottom. The results presented here will help better understand the season- and geography-dependent characteristics of reservoir water quality in Asian Monsoon climate regions such as Korea.  相似文献   
155.
Quality improvement of acidic soil (with an initial pH of approximately 4.5) with respect to soil pH, exchangeable cations, organic matter content, and maize growth was attempted using natural (NSF) and calcined starfish (CSF). Acidic soil was amended with NSF and CSF in the range of 1 to 10 wt.% to improve soil pH, organic matter content, and exchangeable cations. Following the treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, the maize growth experiment was performed with selected treated samples to evaluate the effectiveness of the treatment. The results show that 1 wt.% of NSF and CSF (700 and 900 °C) were required to increase the soil pH to a value higher than 7. In the case of CSF (900 °C), 1 wt.% was sufficient to increase the soil pH value to 9 due to the strong alkalinity in the treatment. No significant changes in soil pHs were observed after 7 days of curing and up to 3 months of curing. Upon treatment, the cation exchange capacity values significantly increased as compared to the untreated samples. The organic content of the samples increased upon NSF treatment, but it remains virtually unchanged upon CSF treatment. Maize growth was greater in the treated samples rather than the untreated samples, except for the samples treated with 1 and 3 wt.% CSF (900 °C), where maize growth was limited due to strong alkalinity. This indicates that the amelioration of acidic soil using natural and calcined starfish is beneficial for plant growth as long as the application rate does not produce alkaline conditions outside the optimal pH range for maize growth.  相似文献   
156.
A pleated filter bag is often used to treat exhaust gas in many industrial applications, due to its fairly high dust collection efficiency and relatively low pressure drop. This work deals with the optimum pleating geometries of a pleated filter made with a newly developed PTFE/glass composite filter. It was found that pleating geometries, including pleat height and pleat pitch, directly affect the cleaning efficiency. The design index, α, which stands for the ratio of pleat height to pleat pitch, is 1.48 for optimum operation. When the α value was higher than 1.48, the pressure drop across the pleated filter medium increased, resulting in a decreased cleaning interval due to the difficulty of filter cleaning. Therefore, it is necessary that the optimum pleating geometry should be determined by employing the dimensionless parameter, α, in the design of cartridge filters.

Implications: A pleated filter bag is often used to treat exhaust gas in many industrial applications due to its fairly high dust collection efficiency and relatively low pressure drop. The present paper introduces an optimum design configuration to make a pleated filter with newly developed PTFE/glass composite filter media. A dimensionless parameter that is the ratio of pleat height to pleat pitch should be considered to make the best quality pleated filter.  相似文献   
157.
Objective: Although identification of factors that influence helmet use during bicycle riding is necessary for the selection of groups that require safe cycling education, limited baseline data are available. The aim of the present study was to analyze the rate of helmet use and the demographic factors that were independently associated with helmet use among Korean bicycle riders.

Methods: In this cross-sectional study, we used public data from the Sixth Korean National Health and Nutrition Examination Survey conducted in 2013 and 2014. Helmet users were defined as subjects who always, usually, or frequently wore helmets when cycling. Independent factors associated with helmet use were determined using odds ratios (ORss) adjusted for 5 demographic factors via multivariate logistic regression analysis.

Results: In the total population, 4,103 individuals were bicycle riders; among these, 782 individuals (19.1%) wore helmets. A total of 21.1% of male riders used helmets, compared to 15.5% of female riders (P <.001). The adjusted logistic regression model revealed that female sex (OR = 0.665; 95% confidence interval [CI], 0.554–0.797), teenage status (OR = 0.475, 95% CI, 0.333–0.678), and low household income (OR = 0.657, 95% CI 0.513–0.841) were significantly associated with nonuse of helmets.

Conclusions: Female sex, teenage status, and low household income were independent factors associated with the nonuse of helmets. We identified factors associated with helmet use during bicycle riding through analysis of baseline data on helmet usage.  相似文献   

158.
Eight types of coals of different rank were selected and their fundamental combustion characteristics were examined along with the conversion of volatile nitrogen (N) to nitrogen oxides (NOx)/fuel N to NOx. The activation energy, onset temperature, and burnout temperature were obtained from the differential thermogravimetry curve and Arrhenius plot, which were derived through thermo-gravimetric analysis. In addition, to derive the combustion of volatile N to NOx/fuel N to NOx, the coal sample, which was pretreated at various temperatures, was burned, and the results were compared with previously derived fundamental combustion characteristics. The authors' experimental results confirmed that coal rank was highly correlated with the combustion of volatile N to NOx/fuel N to NOx.  相似文献   
159.
Environmental Geochemistry and Health - Improper decisions concerning animal carcass disposal sites pose grave threats to environmental biosecurity. However, only a few studies have focused on the...  相似文献   
160.
The elevated level of nitrate in groundwater is a serious problem in Korean agricultural areas. To control and manage groundwater quality, the characterization of groundwater contamination and identification of the factors affecting the nitrate concentration of groundwater are significant. The characterization of groundwater contamination at a hydrologically complex agricultural site in Yupori, Chuncheon (Korea) was undertaken by analyzing the hydrochemical data of groundwater within a statistical framework. Multivariate statistical tools such as cluster analyses and Tobit regression were applied to investigate the spatial variation of nitrate contamination and to analyze the factors affecting the NO3-N concentration in a shallow groundwater system. The groundwater groups from the cluster analysis were consistent with the land use pattern of the study area. The clustered group of a gentle-slope area with lower elevations showed higher NO3-N contamination of groundwater than groups on a hillside with higher elevations. Tobit regression results indicated that the agricultural activity in the vegetable fields and barns were the major factors affecting the elevated NO3-N concentration while the land slopes and elevations were negatively correlated with the NO3-N concentration. This shows that topographic characteristics such as land slopes and elevations should be considered to evaluate the land use impact on shallow groundwater quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号