The association between particulate pollution and cardiovascular morbidity and mortality is well established. While the cardiovascular effects of nationally regulated criteria pollutants (e.g., fine particulate matter [PM2.5] and nitrogen dioxide) have been well documented, there are fewer studies on particulate pollutants that are more specific for traffic, such as black carbon (BC) and particle number (PN). In this paper, we synthesized studies conducted in the Greater Boston Area on cardiovascular health effects of traffic exposure, specifically defined by BC or PN exposure or proximity to major roadways. Large cohort studies demonstrate that exposure to traffic-related particles adversely affect cardiac autonomic function, increase systemic cytokine-mediated inflammation and pro-thrombotic activity, and elevate the risk of hypertension and ischemic stroke. Key patterns emerged when directly comparing studies with overlapping exposure metrics and population cohorts. Most notably, cardiovascular risk estimates of PN and BC exposures were larger in magnitude or more often statistically significant compared to those of PM2.5 exposures. Across multiple exposure metrics (e.g., short-term vs. long-term; observed vs. modeled) and different population cohorts (e.g., elderly, individuals with co-morbidities, young healthy individuals), there is compelling evidence that BC and PN represent traffic-related particles that are especially harmful to cardiovascular health. Further research is needed to validate these findings in other geographic locations, characterize exposure errors associated with using monitored and modeled traffic pollutant levels, and elucidate pathophysiological mechanisms underlying the cardiovascular effects of traffic-related particulate pollutants.
Implications: Traffic emissions are an important source of particles harmful to cardiovascular health. Traffic-related particles, specifically BC and PN, adversely affect cardiac autonomic function, increase systemic inflammation and thrombotic activity, elevate BP, and increase the risk of ischemic stroke. There is evidence that BC and PN are associated with greater cardiovascular risk compared to PM2.5. Further research is needed to elucidate other health effects of traffic-related particles and assess the feasibility of regulating BC and PN or their regional and local sources. 相似文献
The gel barrier formation by a gelling liquid (Colloidal Silica) injection in an unsaturated porous medium is investigated by developing a mathematical model and conducting numerical simulations. Gelation process is initiated by adding electrolytes such as NaCl, and the gel phase consisting of cross-linked colloidal silica particles grows as the gelation process proceeds. The mathematical model describing the transport and gelation of Colloidal Silica (CS) is based on coupled mass balance equations for the gel mixture (the sol phase plus the gel phase), gel phase (cross-linked colloidal silica particles plus water captured between cross-linked particles), and colloidal silica particles (discrete and cross-linked) and NaCl in the sol (suspension of discrete colloidal silica particles in water) and gel phases. The solutions in terms of volumetric fraction of the gel phase yield the gel mixture viscosity via the dependency on the volumetric fraction of gel phase. This dependency is determined from a kinetic gelation model with time-normalized viscosity curves. The proposed model is verified by comparing experimentally and numerically determined hydraulic conductivities of gel-treated soil columns at different CS injection volumes. The numerical experiments indicate that an impermeable gel layer is formed within the time period twice the gel-point in a one-dimensional flow system. At the same normalized time corresponding to twice the gel-point, the CS solutions with lower NaCl concentrations result in further migration and poor performance in plugging the pore space. The viscosity computation proposed in this study is compared with another method available in the literature. It is observed that the other method estimates the viscosity at the mixing zone higher than the one proposed by the authors. The proposed model can simulate realistic injection scenarios with various combinations of operating parameters such as NaCl concentration and NaCl mixing time, and thus providing guidelines in performing this technology on site. 相似文献
Biodegradability of secondary amines (pyrrolidine, piperidine, piperazine, morpholine, and thiomorpholine) under anaerobic conditions was examined in microbial consortia from six different environmental sites. The consortia degraded pyrrolidine and piperidine under denitrifying conditions. Enrichment cultures were established by repeatedly sub-culturing the consortia on pyrrolidine or piperidine in the presence of nitrate. The enrichments strictly required nitrate for the anaerobic degradation and utilized pyrrolidine or piperidine as a carbon, nitrogen, and energy source for their anaerobic growths. The anaerobic degradation of pyrrolidine and piperidine reduced nitrate to nitrogen gas, indicating that these anaerobic degradations were coupled with a respiratory nitrate reduction. 相似文献
Concentrations of tetra- to octa-chlorinated dibenzo-p-dioxins and dibenzofurans in samples collected in or near Tokyo Bay, Japan, with a densely inhabited catchment area, were congener-specifically determined and discussed. Analyzed in this study were samples of surface sediment covering the whole bay area, reference soil representing atmospheric impact, and fish, shellfish and crab commonly consumed as food. The range of concentrations were comparable to or higher than those in other parts of Japan. The origins of these compounds in the catchment area of the bay were investigated in terms of homolog and isomeric compositions in the sediment samples. Biota-sediment accumulation factors for benthic species declined as the degree of chlorination increased. 相似文献
Seasonal variations of emission rates and compositions from coniferous species were measured under controlled conditions using a vegetation enclosure method. Total emission rates and compositions of monoterpene compounds from young and adult trees in different seasons were compared.
It was found that the total emission rates and the components of monoterpene varied significantly with tree species, age, and season. Total emissions from C. japonica and P. koraiensis were higher for older trees than for younger trees; however, significantly higher emissions were found from younger trees for C. obtusa. Higher monoterpene emission rates from each plant were found in spring and summer compared with autumn and winter emissions. 相似文献
The effects of several conditional factors on efficiency of U bioleaching using an iron-oxidizer, Acidithiobacillus ferrooxidans, from U-bearing black shale (349 mg kg-1 of U) were investigated. When batch-type reactors containing black shale were initially inoculated with the cells, lower pH, higher redox potential and higher amount of aqueous Fe3+ than those of non-inoculated reactor were observed until 200 h. Such development of condition, which was facilitated by microbial activity, can enhance the rate and extent of U leaching from the solid substrate. However, under the condition of enough nutrients and energy source (Fe2+) supplied, indigenous Fe-oxidizers in the non-inoculated black shale were activated over time. They exerted almost same influence on the leaching efficiency with the inoculated samples after 250 h. Low initial Fe2+ supply (5 g l-1) and no addition of inorganic nutrients resulted in nearly identical extent of U leaching with that of 9 g l-1 of initial Fe2+ and nutrients supply. The results indicate that, in a practical process of bioleaching, the expenses for Fe2+ and nutrients addition can be reduced. 相似文献
Because the particulate organic carbon (OC) concentrations reported in U.S. Environment Protection Agency Speciation Trends Network (STN) data were not blank corrected, the OC blank concentrations were estimated using the intercept in particulate matter < or = 2.5 microm in aerodynamic diameter (PM2.5) regression against OC concentrations. The estimated OC blank concentrations ranged from 1 to 2.4 microg/m3 showing higher values in urban areas for the 13 monitoring sites in the northeastern United States. In the STN data, several different samplers and analyzers are used, and various instruments show different method detection limit (MDL) values, as well as errors. A comprehensive set of error structures that would be used for numerous source apportionment studies of STN data was estimated by comparing a limited set of measured concentrations and their associated uncertainties. To examine the estimated error structures and investigate the appropriate MDL values, PM2.5 samples collected at a STN site in Burlington, VT, were analyzed through the application of the positive matrix factorization. A total of 323 samples that were collected between December 2000 and December 2003 and 49 species based on several variable selection criteria were used, and eight sources were successfully identified in this study with the estimated error structures and min values among different MDL values from the five instruments: secondary sulfate aerosol (41%), secondary nitrate aerosol (20%), airborne soil (15%), gasoline vehicle emissions (7%), diesel emissions (7%), aged sea salt (4%), copper smelting (3%), and ferrous smelting (2%). Time series plots of contributions from airborne soil indicate that the highly elevated impacts from this source were likely caused primarily by dust storms. 相似文献
The effects of solution:soil ratio, major cations present in soils, and the ethylenediaminetetraacetic acid (EDTA):lead stoichiometric ratio on the extraction of lead using EDTA were studied for three different Superfund site soils, one rifle range soil, and one artificially lead-contaminated soil. Extraction of lead from the lead-contaminated soils was not affected by a solution:soil ratio as low as 3:1 but instead was dependent on the quantity of EDTA present. Results of the experiments showed that the extraction efficiencies were different for each soil. If sufficiently large amount of EDTA was applied (EDTA-Pb stoichiometric ratio greater than 10), most of the lead were extracted for all soils tested except for a Superfund site soil from a lead mining area. The differences in extraction efficiencies may be due to the major cations present in soils which may compete with lead for active sites on EDTA. For example, iron ions most probably competed strongly with lead for EDTA ligand sites for pH less than 6. In addition, copper and zinc may potentially compete with lead for EDTA ligand sites. Experimental results showed that addition of EDTA to the soil resulted in a very large increase in metals solubility. The total molar concentrations of major cations extracted were as much as 20 times the added molar concentration of EDTA. For some of the soils tested, lead may have been occluded in the iron oxides present in the soil which may affect lead extraction. While major cations present in the soil may be one of the factors affecting lead extraction efficiency, the type of lead species present also play a role. 相似文献
The effect of sediment sources on the selection of polychlorinated biphenyl (PCB) dechlorinating competence was investigated using sediments from two different locations, the Grasse River and Owasco Lake. These two sediments had a similar organic carbon content but different particle size distribution. The two PCB-free sediments were spiked with Aroclor 1248 and inoculated with microorganisms from the Reynolds and General Motors sites in the St. Lawrence River, which exhibited different dechlorination patterns. When each inoculum was serially transferred into fresh sediments four times (every 8-10 weeks), they still maintained the initial dechlorination patterns regardless, the source of sediments and the number of transfers, and dechlorination patterns of the two inocula in the same sediments did not converge. In a parallel approach, when the acclimated microorganisms from the Reynolds site were inoculated into fresh sediments from both sources as well as sediments enriched with organic carbon (2%, w/v), the dechlorination pattern remained unchanged after a 40-week incubation. These results suggest that the sediment characteristics or organic carbon content did not play a role in the selection of dechlorinating populations. 相似文献
A model for predicting the distribution of dibenzofuran and polychlorinated dibenzofuran (PCDF) congeners from a distribution of phenols was developed. The model is based on a simplified chemical mechanism. Relative rate constants and reaction order with respect to phenol precursors were derived from experimental results using single phenols and equal molar mixtures of up to four phenols. For validation, experiments were performed at three temperatures using a distribution of phenol and 19 chlorinated phenols as measured in municipal waste incinerator exhaust gas. Comparison of experimental measurements and model predictions for PCDF isomer distributions and homologue pattern shows agreement within measurement uncertainty. The R-squared correlation coefficient exceeds 0.9 for all PCDF isomer distributions and the distribution of PCDF homologues. These results demonstrate that the distribution of dibenzofuran and the 135 PCDF congeners from gas-phase condensation of phenol and chlorinated phenols can be predicted from measurement of the distribution of phenol and the 19 chlorinated phenol congeners. 相似文献