首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1688篇
  免费   16篇
  国内免费   73篇
安全科学   76篇
废物处理   186篇
环保管理   183篇
综合类   160篇
基础理论   277篇
环境理论   2篇
污染及防治   651篇
评价与监测   163篇
社会与环境   63篇
灾害及防治   16篇
  2023年   20篇
  2022年   37篇
  2021年   36篇
  2020年   15篇
  2019年   29篇
  2018年   44篇
  2017年   58篇
  2016年   82篇
  2015年   43篇
  2014年   71篇
  2013年   140篇
  2012年   105篇
  2011年   119篇
  2010年   96篇
  2009年   109篇
  2008年   122篇
  2007年   108篇
  2006年   100篇
  2005年   87篇
  2004年   83篇
  2003年   57篇
  2002年   62篇
  2001年   47篇
  2000年   21篇
  1999年   12篇
  1998年   9篇
  1997年   7篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1965年   1篇
排序方式: 共有1777条查询结果,搜索用时 15 毫秒
481.
482.
The k-nearest neighbor (k-NN) method was evaluated to predict the influent flow rate and four water qualities, namely chemical oxygen demand (COD), suspended solid (SS), total nitrogen (T-N) and total phosphorus (T-P) at a wastewater treatment plant (WWTP). The search range and approach for determining the number of nearest neighbors (NNs) under dry and wet weather conditions were initially optimized based on the root mean square error (RMSE). The optimum search range for considering data size was one year. The square root-based (SR) approach was superior to the distance factor-based (DF) approach in determining the appropriate number of NNs. However, the results for both approaches varied slightly depending on the water quality and the weather conditions. The influent flow rate was accurately predicted within one standard deviation of measured values. Influent water qualities were well predicted with the mean absolute percentage error (MAPE) under both wet and dry weather conditions. For the seven-day prediction, the difference in predictive accuracy was less than 5% in dry weather conditions and slightly worse in wet weather conditions. Overall, the k-NN method was verified to be useful for predicting WWTP influent characteristics.  相似文献   
483.
Due to increased pollution of potable water sources as a consequence of eutrophication and anthropogenic xenobiotics, sustainable water purification is an essential concern. Therefore, the Green Liver System, a natural, economic and sustainable water purification system employing the biotransformation capabilities of aquatic plants, was developed. To expand the capacities and applications of this system, new aquatic plants are continually evaluated for their potential to remediate various aquatic pollutants. In this study, the potential of Cladophora glomerata to internalize cyanotoxins, microcystins (MCs) and anatoxin-a, and consequently its ability to cope with the subsequent oxidative stress associated with toxin-uptake were investigated. C. glomerata was able to take up all three of the tested MC congeners as well as anatoxin-a, similarly to previous toxin internalizations reported for aquatic plants such as Ceratophyllum demersum, Myriophyllum spicatum and Hydrilla versiculata. The antioxidative stress defense of C. glomerata proved to efficiently endure the toxin-uptake with no adverse effects. Subsequently, the uptake potential of C. glomerata was investigated at lab-scale by exposure to the three MC congeners and anatoxin-a collectively. After a period of seven days, 95–97% of the MCs and 100% of anatoxin-a were removed from the exposure media. C. glomerata therefore, is a suitable candidate to be incorporated in future Green Liver Systems.  相似文献   
484.
Exposure studies have linked arsenic (As) ingestion with disease in mining-affected populations; however, inhalation of mine waste dust as a pathway for pulmonary toxicity and systemic absorption has received limited attention. A biologically relevant extractant was used to assess the 24-h lung bioaccessibility of As in dust isolated from four distinct types of historical gold mine wastes common to regional Victoria, Australia. Mine waste particles less than 20 µm in size (PM20) were incubated in a simulated lung fluid containing a major surface-active component found in mammalian lungs, dipalmitoylphosphatidylcholine. The supernatants were extracted, and their As contents measured after 1, 2, 4, 8 and 24 h. The resultant As solubility profiles show rapid dissolution followed by a more modest increasing trend, with between 75 and 82% of the total 24-h bioaccessible As released within the first 8 h. These profiles are consistent with the solubility profile of scorodite, a secondary As-bearing phase detected by X-ray diffraction in one of the investigated waste materials. Compared with similar studies, the cumulative As concentrations released at the 24-h time point were extremely low (range 297 ± 6–3983 ± 396 µg L?1), representing between 0.020 ± 0.002 and 0.036 ± 0.003% of the total As in the PM20.  相似文献   
485.
Feasibility of phosphate fertilizer to immobilize cadmium in a field   总被引:2,自引:0,他引:2  
Hong CO  Lee do K  Kim PJ 《Chemosphere》2008,70(11):2009-2015
To reduce effectively cadmium (Cd) phytoextractability by phosphate fertilizer in Cd contaminated soil, fused and superphosphate (FSP) was applied at the rate of 0, 33.5 (recommendation level), 167.5, and 335 kg P ha−1 for radish (Raphanus sativa L.). Unlike from what we expected, soil Cd extractability and Cd concentration in radish increased with increasing FSP application in the field. To determine the effect of FSP on Cd immobilization, FSP was mixed with the selected soil at the rate of 0, 200, 400, 800, and 1600 mg P kg−1 and then incubated for 8 weeks. As observed in the field study, NH4OAc extractable Cd concentration increased slightly with FSP addition up to 400 mg P kg−1 and thereafter dramatically decreased upon increasing its application rate. Soil pH and negative charge were decreased at low level of FSP application up to 400 mg P kg−1, but thereafter continually increased with increasing application level. This could be indirect evidence that net soil negative charge was increased by the specific adsorption of phosphate at the high rate of FSP application over 400 mg P kg−1. The labile Cd fraction (water soluble and exchangeable + acidic fraction) increased with increasing FSP application by 400 mg P kg−1 and thereafter gradually decreased with corresponding increase in unlabile fraction (oxidizable and residual fraction). Based on these results, FSP might be applied with a very high rate over 800 mg P kg−1 to decrease Cd extractability in the selected field. However, this level is equivalent to 1440 kg P ha−1, which is about 43 times higher than the recommendation levels for radish production and resulted in a significant increase in water soluble P concentration creating a new environmental problem. Therefore, the feasibility of FSP to reduce Cd extractability in the field is very low.  相似文献   
486.
Kim Y  Istok JD  Semprini L 《Chemosphere》2008,71(9):1654-1664
This study developed single-well, gas-sparging tests for assessing the feasibility of in situ aerobic cometabolism of trichloroethene (TCE) and cis-1,2-dichloroethene (cis-DCE) using propane and methane as growth substrates. Tests were performed in groundwater contaminated with TCE (100-400 microg l(-1)) and cis-DCE (20-60 microg l(-1)). A series of gas-sparging tests was performed by first sparging ("bubbling") gas mixtures in a well fitted with a "straddle" packer and then periodically sampling groundwater from the same well to develop concentration profiles and to estimate transformation rate coefficients. Evidence that gas-sparging of propane (or methane) and oxygen had stimulated organisms expressing a propane (or methane) monooxygenase enzyme system and the capability to transform TCE and cis-DCE included: (1) the transformation of sparged ethylene and propylene to their corresponding cometabolic by-products, ethylene oxide and propylene oxide, (2) the transformation of both cis-DCE and TCE in the propane-sparged well, (3) the transformation of cis-DCE in the methane-sparged well, and (4) the inhibition of ethylene and propylene transformations in the presence of acetylene, a known monooxygenase inactivator. At a well sparged with propane, first-order rate coefficients for propane utilization and ethylene and propylene transformation were similar, ranging from 0.007 to 0.010 h(-1). At the well sparged with methane, the propylene first-order transformation rate coefficient was 0.028 h(-1), a factor of 1.8 and 1.6 greater than methane and ethylene, respectively. The results demonstrated that gas-sparging tests are a rapid, low-cost means of assessing the potential for the in situ aerobic cometabolism of cis-DCE and TCE.  相似文献   
487.
Lee ES  Woo NC  Schwartz FW  Lee BS  Lee KC  Woo MH  Kim JH  Kim HK 《Chemosphere》2008,71(5):902-910
Release and spreading of permanganate (MnO(4)(-)) in the well-based controlled-release potassium permanganate (KMnO(4)) barrier system (CRP system) was investigated by conducting column release tests, model simulations, soil oxidant demand (SOD) analyses, and pilot-scale flow-tank experiments. A large flow tank (L x W x D=8m x 4m x 3m) was constructed. Pilot-scale CRP pellets (OD x L=0.05 m x1.5m; n=110) were manufactured by mixing approximately 198 kg of KMnO(4) powders with paraffin wax and silica sands in cylindrical moulds. The CRP system (L x W x D=3m x 4m x 1.5m) comprising 110 delivery wells in three discrete barriers was constructed in the flow tank. Natural sands (organic carbon content=0.18%; SOD=3.7-11 g MnO(4)(-)kg(-1)) were used as porous media. Column release tests and model simulations indicated that the CRP system could continuously release MnO(4)(-) over several years, with slowly decreasing release rates of 2.5 kg d(-1) (day one), 109 g d(-1) (day 100), 58 g d(-1) (year one), 22 g d(-1) (year five), and 12 g d(-1) (year 10). Mean MnO(4)(-) concentrations within the CRP system ranged from 0.5 to 6 mg l(-1) during the 42 days of testing period. The continuously releasing MnO(4)(-) was gradually removed by SOD limiting the length of MnO(4)(-) zone in the porous media. These data suggested that the CRP system could create persistent and confined oxidation zone in the subsurface. Through development of advanced tools for describing agent transport and facilitating lateral agent spreading, the CRP system could provide new approach for long-term in situ treatment of contaminant plumes in groundwater.  相似文献   
488.
A study design was developed and demonstrated for deployment of a portable emission measurement system (PEMS) for excavators. Excavators are among the most commonly used vehicles in construction activities. The PEMS measured nitric oxide, carbon monoxide, hydrocarbons, carbon dioxide, and opacity-based particulate matter. Data collection, screening, processing, and analysis protocols were developed to assure data quality and to quantify variability in vehicle fuel consumption and emissions rates. The development of data collection procedures was based on securing the PEMS while avoiding disruption to normal vehicle operations. As a result of quality assurance, approximately 90% of the attempted measurements resulted in valid data. On the basis of field data collected for three excavators, an average of 50% of the total nitric oxide emissions was associated with 29% of the time of operation, during which the average engine speed and manifold absolute pressure were significantly higher than corresponding averages for all data. Mass per time emission rates during non-idle modes (i.e., moving and using bucket) were on average 7 times greater than for the idle mode. Differences in normalized average rates were influenced more by intercycle differences than intervehicle differences. This study demonstrates the importance of accounting for intercycle variability in real-world in-use emissions to develop more accurate emission inventories. The data collection and analysis methodology demonstrated here is recommended for application to more vehicles to better characterize real-world vehicle activity, fuel use, and emissions for nonroad construction equipment.  相似文献   
489.
Hydrogeologic and hydrochemical data for subway tunnel seepage waters in Seoul (Republic of Korea) were examined to understand the effect of underground tunnels on the degradation of urban groundwater. A very large quantity of groundwater (up to 63 million m3 year− 1) is discharged into subway tunnels with a total length of 287 km, resulting in a significant drop of the local groundwater table and the abandonment of groundwater wells. For the tunnel seepage water samples (n = 72) collected from 43 subway stations, at least one parameter among pathogenic microbes (total coliform, heterotrophic bacteria), dissolved Mn and Fe, NH4+, NO3, turbidity, and color exceeded the Korean Drinking Water Standards. Locally, tunnel seepage water was enriched in dissolved Mn (avg. 0.70 mg L− 1, max. 5.58 mg L− 1), in addition to dissolved Fe, NH4+, and pathogenic microbes, likely due to significant inflow of sewage water from broken or leaking sewer pipes.Geochemical modeling of redox reactions was conducted to simulate the characteristic hydrochemistry of subway tunnel seepage. The results show that variations in the reducing conditions occur in urban groundwater, dependent upon the amount of organic matter-rich municipal sewage contaminating the aquifer. The organic matter facilitates the reduction and dissolution of Mn- and Fe-bearing solids in aquifers and/or tunnel construction materials, resulting in the successive increase of dissolved Mn and Fe. The present study clearly demonstrates that locally significant deterioration of urban groundwater is caused by a series of interlinked hydrogeologic and hydrochemical changes induced by underground tunnels.  相似文献   
490.
Variations in the soil/sediment organic matter (SOM)-hydrophobic organic contaminant (HOC) bindings upon microbially mediated redox conditions were examined. While the extractability of pyrene associated with soil declined after its biodegradation began during aerobic incubation, its variations were almost constant (±3.0-4.4%) during anoxic/anaerobic incubations. The dissolved organic matter released from the soil incubated under highly reduced conditions became more humified and aromatic, had a higher average molecular weight, and was more polydispersed compared to that obtained from oxic incubation, similar to the SOM alterations in the early stage of diagenesis (humification). The concentrations of pyrene in the aqueous phase increased significantly during the soil incubations under highly reduced conditions due to its favorable interaction with the altered DOM. Our results suggest that the microbially mediated redox conditions have significant impacts on SOM and should be considered for the transport, fate, bioavailability, and exposure risk of HOCs in the geo-environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号