首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1691篇
  免费   16篇
  国内免费   73篇
安全科学   76篇
废物处理   186篇
环保管理   183篇
综合类   160篇
基础理论   280篇
环境理论   2篇
污染及防治   651篇
评价与监测   163篇
社会与环境   63篇
灾害及防治   16篇
  2023年   20篇
  2022年   37篇
  2021年   36篇
  2020年   15篇
  2019年   29篇
  2018年   44篇
  2017年   58篇
  2016年   82篇
  2015年   43篇
  2014年   71篇
  2013年   141篇
  2012年   105篇
  2011年   119篇
  2010年   96篇
  2009年   109篇
  2008年   122篇
  2007年   109篇
  2006年   100篇
  2005年   87篇
  2004年   83篇
  2003年   57篇
  2002年   62篇
  2001年   47篇
  2000年   21篇
  1999年   12篇
  1998年   9篇
  1997年   7篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1971年   1篇
  1965年   1篇
排序方式: 共有1780条查询结果,搜索用时 15 毫秒
21.
Studies on quantitative soil contamination due to heavy metals were carried out in Katedan Industrial Development Area (KIDA), south of Hyderabad, Andhra Pradesh, India under the Indo-Norwegian Institutional Cooperation Programme. The study area falls under a semi-arid type of climate and consists of granites and pegmatite of igneous origin belonging to the Archaean age. There are about 300 industries dealing with dyeing, edible oil production, battery manufacturing, metal plating, chemicals, etc. Most of the industries discharge their untreated effluents either on open land or into ditches. Solid waste from industries is randomly dumped along roads and open grounds. Soil samples were collected throughout the industrial area and from downstream residential areas and were analysed by X-ray Fluorescence Spectrometer for fourteen trace metals and ten major oxides. The analytical data shows very high concentrations of lead, chromium, nickel, zinc, arsenic and cadmium through out the industrial area. The random dumping of hazardous waste in the industrial area could be the main cause of the soil contamination spreading by rainwater and wind. In the residential areas the local dumping is expected to be the main source as it is difficult to foresee that rain and wind can transport the contaminants from the industrial area. If emission to air by the smokestacks is significant, this may contribute to considerable spreading of contaminants like As, Cd and Pb throughout the area. A comparison of the results with the Canadian Soil Quality Guidelines (SQGL) show that most of the industrial area is heavily contaminated by As, Pb and Zn and local areas by Cr, Cu and Ni. The residential area is also contaminated by As and some small areas by Cr, Cu, Pb and Zn. The Cd contamination is detected over large area but it is not exceeding the SQGL value. Natural background values of As and Cr exceed the SQGL values and contribute significantly to the contamination in the residential area. However, the availability is considerably less than anthropogenic contaminants and must therefore be assessed differently. The pre- and post-monsoon sampling over two hydrological cycles in 2002 and 2003 indicate that the As, Cd and Pb contaminants are more mobile and may expect to reach the groundwater. The other contaminants seem to be much more stable. The contamination is especially serious in the industrial area as it is housing a large permanent residing population. The study not only aims at determining the natural background levels of trace elements as a guide for future pollution monitoring but also focuses on the pollution vulnerability of the watershed. A plan of action for remediation is recommended.  相似文献   
22.
Environmental Chemistry Letters - The rising demand of metals for batteries is calling for advanced methods to separate metallic mixtures in mineral ores and electronic waste. In particular, the...  相似文献   
23.

Climate change issues are calling for advanced methods to produce materials and fuels in a carbon–neutral and circular way. For instance, biomass pyrolysis has been intensely investigated during the last years. Here we review the pyrolysis of algal and lignocellulosic biomass with focus on pyrolysis products and mechanisms, oil upgrading, combining pyrolysis and anaerobic digestion, economy, and life cycle assessment. Products include oil, gas, and biochar. Upgrading techniques comprise hot vapor filtration, solvent addition, emulsification, esterification and transesterification, hydrotreatment, steam reforming, and the use of supercritical fluids. We examined the economic viability in terms of profitability, internal rate of return, return on investment, carbon removal service, product pricing, and net present value. We also reviewed 20 recent studies of life cycle assessment. We found that the pyrolysis method highly influenced product yield, ranging from 9.07 to 40.59% for oil, from 10.1 to 41.25% for biochar, and from 11.93 to 28.16% for syngas. Feedstock type, pyrolytic temperature, heating rate, and reaction retention time were the main factors controlling the distribution of pyrolysis products. Pyrolysis mechanisms include bond breaking, cracking, polymerization and re-polymerization, and fragmentation. Biochar from residual forestry could sequester 2.74 tons of carbon dioxide equivalent per ton biochar when applied to the soil and has thus the potential to remove 0.2–2.75 gigatons of atmospheric carbon dioxide annually. The generation of biochar and bio-oil from the pyrolysis process is estimated to be economically feasible.

  相似文献   
24.
This study was to find out potential of methane yield on food waste and food waste leachate as biomass in Korea. The seven biogasification facilities were selected for comparison of theoretical methane yield and actual methane yield. The theoretical methane yield was calculated based on organic constituents (carbohydrate, protein, fat) and based on element analysis. The actual methane yield was investigated based on volatile solids and CODcr. Theoretical methane yields by organic constituents were 0.52 Sm3CH4/kg VS and 0.35 Sm3CH4/kg CODcr and these by element analysis were 0.53 Sm3CH4/kg VS and 0.36 Sm3CH4/kg CODcr. Actual methane yields were 0.36 Sm3CH4/kg VSin and 0.26 Sm3CH4/kg CODcrin. Considering the average removal efficiency of organic materials of seven FWL biogasification facilities, actual methane yields were 0.48 Sm3CH4/kg VSrem and 0.33 Sm3CH4/kg CODcrrem. Methane yield by organic constituents is very similar to that by element analysis and actual methane yields of volatile solids and CODcr were similar to theoretical value. The actual methane yield in this study showed approximated boundary values with previous other references which conducted in lab-scale or biochemical methane potential (BMP) tests. In conclusion, Korean food waste and food waste leachate have sufficient potential of methane yield in the ongoing biogasification facilities.  相似文献   
25.
Bacterial synthesis of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) copolymer [P(3HB-co-3HV)] using the hydrolysate of rice straw waste as a carbon source was affected by the composition of the hydrolysate, which depends highly on the rice straw pretreatment condition. Acid digestion with 2 % sulfuric acid generated larger production of P(3HB-co-3HV) than 6 % sulfuric acid, but 3HV concentration in the copolymer produced with 2 % acid hydrolysate was only 8.8 % compared to 18.1 % with 6 % acid hydrolysate. To obtain a higher 3HV mole fraction for enhanced flexibility of the copolymer, an additional heating was conducted with the 2 % acid hydrolysate after removal of residual rice straw. As the additional heating time increased a higher concentration of levulinic acid was generated, and consequently, the mole fraction of 3HV in P(3HB-co-3HV) increased. Among the conditions tested (i.e., 20-, 40-, 60-min), 60-min additional heating following 2 % sulfuric acid digestion achieved the highest 3HV mole fraction of 22.9 %. However, a longer heating time decreased the P(3HB-co-3HV) productivity, probably due to the increased intermediates concentrations acting as inhibitors in the hydrolysates. Therefore, the use of additional heating needs to consider both the increase in the 3HV mole fraction and the decrease in the P(3HB-co-3HV) productivity.  相似文献   
26.
Polychlorinated biphenyls (PCBs) are a persistent environmental issue worldwide. This study summarizes the results obtained from a bench‐scale test of remediating PCB‐impacted soil. The research aimed to evaluate the effectiveness of extracting the PCB Aroclor 1260 from soil, transferring it to a liquid matrix, and then treating the PCB‐containing liquid using an Activated Metal Treatment System, a technology developed by NASA based on zero valent magnesium (ZVMg). The soil was from a former electrical plant area impacted by PCBs. The initial concentration of untreated soil contained an average of 4.7 ± 0.15 mg/kg of Aroclor 1260. The results showed that the mass transfer phenomena is possible using ethanol as a liquid matrix, reaching transfer results up to 93 percent. The ZVMg enabled the destruction of the Aroclor 1260, which reached 20 percent without any buildup of undesirable by‐products, such as less chlorinated PCBs.  ©2016 Wiley Periodicals, Inc.  相似文献   
27.
The mixing characteristics of a passive scalar in the turbulent flow of a selective catalytic reduction process were numerically and experimentally investigated, focusing especially on an injection nozzle with multiple holes for the reducing agent. The multihole injection nozzle studied has six holes that are perpendicular to the ambient flue gas flow and are located near the tip of the nozzle. Large eddy simulation was applied to the turbulent flow and mixing fields to elucidate the mixing mechanism of the proposed nozzle compared with the single-hole nozzle that is commonly used in the conventional selective catalytic reduction process. From the results, there exist broader regions of higher turbulent intensities for the multihole nozzle than for the conventional single-hole nozzle. These regions are well matched with the positions of high vorticity in the near upstream region of the jet flow issuing from the multiple holes of the nozzle. Consequently, the high turbulent intensities and vorticity magnitudes lead to intensified mixing between the flue gas and the reducing agent. Hence, the most suitable molar ratio between NOx and the reducing agent for the catalytic reaction can be easily obtained within a shorter physical mixing length as a result of the enhanced scalar mixing. Finally, the numerical results were applied to a trial design version of a multihole nozzle, and this nozzle was experimentally tested to confirm its mixing performance.  相似文献   
28.
Bioleaching of spent lithium ion secondary batteries, containing LiCoO2, was attempted in this investigation. The present study was carried out using chemolithotrophic and acidophilic bacteria Acidithiobacillus ferrooxidans, which utilized elemental sulfur and ferrous ion as the energy source to produce metabolites like sulfuric acids and ferric ion in the leaching medium. These metabolites helped dissolve metals from spent batteries. Bio-dissolution of cobalt was found to be faster than lithium. The effect of initial Fe(II) concentration, initial pH and solid/liquid (w/v) ratio during bioleaching of spent battery wastes were studied in detail. Higher Fe(II) concentration showed a decrease in dissolution due co-precipitation of Fe(III) with the metals in the residues. The higher solid/liquid ratio (w/v) also affected the metal dissolution by arresting the cell growth due to increased metal concentration in the waste sample. An EDXA mapping was carried out to compare the solubility of both cobalt and lithium, and the slow dissolution rate was clearly found from the figures.  相似文献   
29.
In order to separate and reuse heavy and alkali metals from flue gas during sewage sludge incineration, experiments were carried out in a pilot incinerator. The experimental results show that most of the heavy and alkali metals form condensed phase at temperature above 600 degrees C. With the addition of 5% calcium chloride into sewage sludge, the gas/solid transformation temperature of part of the metals (As, Cu, Mg and Na) is evidently decreased due to the formation of chloride, while calcium chloride seems to have no significant influence on Zn and P. Moreover, the mass fractions of some heavy and alkali metals in the collected fly ash are relatively high. For example, the mass fractions for Pb and Cu in the fly ash collected by the filter are 1.19% and 19.7%, respectively, which are well above those in lead and copper ores. In the case of adding 5% calcium chloride, the heavy and alkali metals can be divided into three groups based on their conversion temperature: Group A that includes Na, Zn, K, Mg and P, which are converted into condensed phase above 600 degrees C; Group B that includes Pb and Cu which solidify when the temperature is above 400 degrees C; and Group C that includes As, whose condensation temperature is as low as 300 degrees C.  相似文献   
30.
Durability of recycled aggregate concrete using pozzolanic materials   总被引:5,自引:0,他引:5  
In this study, pulverized fuel ash (PFA) and ground granulated blast furnace slag (GGBS) were used to compensate for the loss of strength and durability of concrete containing recycled aggregate. As a result, 30% PFA and 65% GGBS concretes increased the compressive strength to the level of control specimens cast with natural granite gravel, but the tensile strength was still lowered at 28 days. Replacement with PFA and GGBS was effective in raising the resistance to chloride ion penetrability into the concrete body, measured by a rapid chloride ion penetration test based on ASTM C 1202-91. It was found that the corrosion rate of 30% PFA and 65% GGBS concretes was kept at a lower level after corrosion initiation, compared to the control specimens, presumably due to the restriction of oxygen and water access. However, it was less effective in increasing the chloride threshold level for steel corrosion. Hence, it is expected that the corrosion time for 30% PFA and 65% GGBS concrete containing recycled aggregate mostly equates to the corrosion-free life of control specimens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号