首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23740篇
  免费   250篇
  国内免费   205篇
安全科学   631篇
废物处理   1050篇
环保管理   2841篇
综合类   3509篇
基础理论   6548篇
环境理论   6篇
污染及防治   6322篇
评价与监测   1642篇
社会与环境   1513篇
灾害及防治   133篇
  2022年   205篇
  2021年   168篇
  2020年   151篇
  2019年   162篇
  2018年   322篇
  2017年   348篇
  2016年   516篇
  2015年   399篇
  2014年   638篇
  2013年   1838篇
  2012年   751篇
  2011年   1048篇
  2010年   910篇
  2009年   910篇
  2008年   1052篇
  2007年   1119篇
  2006年   938篇
  2005年   813篇
  2004年   778篇
  2003年   826篇
  2002年   759篇
  2001年   1052篇
  2000年   753篇
  1999年   421篇
  1998年   289篇
  1997年   319篇
  1996年   325篇
  1995年   369篇
  1994年   335篇
  1993年   265篇
  1992年   293篇
  1991年   276篇
  1990年   305篇
  1989年   294篇
  1988年   230篇
  1987年   234篇
  1986年   210篇
  1985年   232篇
  1984年   225篇
  1983年   218篇
  1982年   196篇
  1981年   181篇
  1980年   163篇
  1979年   184篇
  1978年   137篇
  1977年   158篇
  1975年   133篇
  1974年   133篇
  1973年   136篇
  1972年   122篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Advances in polymerase chain reaction (PCR) have permitted accurate, rapid and quantitative identification of microorganisms in pure cultures regardless of viability or culturability. In this study, a simple sample processing method was investigated for rapid identification and quantification of fungal spores from dust samples using both conventional and real-time PCR. The proposed method was evaluated for susceptibility to interference from environmental dust samples. Stachybotrys chartarum and Aspergillus fumigatus were used as test organisms. The sensitivity of detection in pure culture was 0.1 spore DNA equivalents per PCR reaction corresponding to 20 spores ml(-1) in the sample. However, 1 spore DNA equivalent per PCR reaction corresponding to 200 spores ml(-1) in the sample was the lowest amount of spores tested without interference in dust samples spiked with spores of either fungal species. The extent of inhibition was calculated using conventional and real-time PCR reactions containing fungal spores, specific primers, specific probes (for real-time PCR) and various amounts of dust. The results indicate that the extent of inhibition by dust on PCR varies with the type and amount of dust, and number of spores. No interference in the analysis of spiked samples was detected from 0.2 mg ml(-1) of four real-life dust samples at p-value >0.05 using 2 x 10(4) spores for conventional PCR and 2 x 10(5) spores for real-time PCR. However, samples containing >0.2 mg ml(-1) real-life dust compromised the PCR assay. These results suggest the potential usefulness of a simple sample processing method in conjunction with PCR for monitoring the fungal content of aerosols collected from indoor environments.  相似文献   
982.
Perchlorate is a water soluble anion that is readily accumulated in vegetation. It inhibits uptake of iodide into thyroid gland tissue, thereby reducing production of thyroid hormones. Potential raccoon food items including berries, fish, and vegetation collected at a contaminated site contained quantifiable concentrations of perchlorate as determined by ion chromatography. Therefore, we monitored resident raccoons for exposure to perchlorate by examining plasma perchlorate and thyroid hormone concentrations. Resulting analytical data failed to demonstrate perchlorate exposure among raccoons that likely consumed food items collected along perchlorate-contaminated water bodies. There were no correlations between triiodothyronine or thyroxine and thyroid stimulating hormone concentrations, but triiodothyronine concentrations in raccoon plasma were significantly higher in 2000 than in 2001 (p = 0.0081). These data suggest that natural attenuation and remedial efforts initiated in January of 2001 may have reduced perchlorate exposure among raccoons inhabiting this site from 2000 to 2001. Temporal, spatial, and analytical factors limited our ability to quantify exposure among raccoons, however, our data do not indicate that raccoons currently inhabiting this site are at risk for significant exposure to perchlorate and subsequent effects.  相似文献   
983.
Butter (45) and ghee (55) samples were collected from rural and urban areas of cotton growing belt of Haryana and analysed for detecting the residues of organochlorine, synthetic pyrethroid and organophosphate insecticides. The estimation was carried out by using multi residue analytical technique employing GC-ECD and GC-NPD systems equipped with capillary columns. Butter samples were comparatively more contaminated (97%) than ghee (94%), showing more contamination with organochlorine insecticides from urban samples. About 11% samples of butter showed endosulfan residues above MRL value and 2% samples had residues of synthetic pyrethroids and organophosphates each above their respective MRL values. In ghee, residues of HCH & DDT both and of endosulfan exceeded the MRL values in 5 and 20% samples, respectively. Among organophosphates, only chlorpyriphos was detected with 9% samples showing its residue above MRL value. Irrespective of contamination levels, residues above the MRL values were more in ghee. More extensive study covering other agricultural regions/zones of Haryana has been suggested to know the overall scenario of contamination of milk products.  相似文献   
984.
Information regarding air emissions from shale gas extraction and production is critically important given production is occurring in highly urbanized areas across the United States. Objectives of this exploratory study were to collect ambient air samples in residential areas within 61 m (200 feet) of shale gas extraction/production and determine whether a “fingerprint” of chemicals can be associated with shale gas activity. Statistical analyses correlating fingerprint chemicals with methane, equipment, and processes of extraction/production were performed. Ambient air sampling in residential areas of shale gas extraction and production was conducted at six counties in the Dallas/Fort Worth (DFW) Metroplex from 2008 to 2010. The 39 locations tested were identified by clients that requested monitoring. Seven sites were sampled on 2 days (typically months later in another season), and two sites were sampled on 3 days, resulting in 50 sets of monitoring data. Twenty-four-hour passive samples were collected using summa canisters. Gas chromatography/mass spectrometer analysis was used to identify organic compounds present. Methane was present in concentrations above laboratory detection limits in 49 out of 50 sampling data sets. Most of the areas investigated had atmospheric methane concentrations considerably higher than reported urban background concentrations (1.8–2.0 ppmv). Other chemical constituents were found to be correlated with presence of methane. A principal components analysis (PCA) identified multivariate patterns of concentrations that potentially constitute signatures of emissions from different phases of operation at natural gas sites. The first factor identified through the PCA proved most informative. Extreme negative values were strongly and statistically associated with the presence of compressors at sample sites. The seven chemicals strongly associated with this factor (o-xylene, ethylbenzene, 1,2,4-trimethylbenzene, m- and p-xylene, 1,3,5-trimethylbenzene, toluene, and benzene) thus constitute a potential fingerprint of emissions associated with compression.

Implications: Information regarding air emissions from shale gas development and production is critically important given production is now occurring in highly urbanized areas across the United States. Methane, the primary shale gas constituent, contributes substantially to climate change; other natural gas constituents are known to have adverse health effects. This study goes beyond previous Barnett Shale field studies by encompassing a wider variety of production equipment (wells, tanks, compressors, and separators) and a wider geographical region. The principal components analysis, unique to this study, provides valuable information regarding the ability to anticipate associated shale gas chemical constituents.  相似文献   

985.
This study evaluated the toxicity of herbicide atrazine, along with its bioaccumulation and biodegradation in the green microalga Chlamydomonas mexicana. At low concentration (10 μg L?1), atrazine had no profound effect on the microalga, while higher concentrations (25, 50, and 100 μg L?1) imposed toxicity, leading to inhibition of cell growth and chlorophyll a accumulation by 22 %, 33 %, and 36 %, and 13 %, 24 %, and 27 %, respectively. Atrazine 96-h EC50 for C. mexicana was estimated to be 33 μg L?1. Microalga showed a capability to accumulate atrazine in the cell and to biodegrade the cell-accumulated atrazine resulting in 14–36 % atrazine degradation at 10–100 μg L?1. Increasing atrazine concentration decreased the total fatty acids (from 102 to 75 mg g?1) and increased the unsaturated fatty acid content in the microalga. Carbohydrate content increased gradually with the increase in atrazine concentration up to 15 %. This study shows that C. mexicana has the capability to degrade atrazine and can be employed for the remediation of atrazine-contaminated streams.  相似文献   
986.
In the South of Italy, it is common for farmers to burn pruning waste from olive trees in spring. In order to evaluate the impact of the biomass burning source on the physical and chemical characteristics of the particulate matter (PM) emitted by these fires, a PM monitoring campaign was carried out in an olive grove. Daily PM10 samples were collected for 1 week, when there were no open fires, and when biomass was being burned, and at two different distances from the fires. Moreover, an optical particle counter and a polycyclic aromatic hydrocarbon (PAH) analyzer were used to measure the high time-resolved dimensional distribution of particles emitted and total PAHs concentrations, respectively. Chemical analysis of PM10 samples identified organic and inorganic components such as PAHs, ions, elements, and carbonaceous fractions (OC, EC). Analysis of the collected data showed the usefulness of organic and inorganic tracer species and of PAH diagnostic ratios for interpreting the impact of biomass fires on PM levels and on its chemical composition. Finally, high time-resolved monitoring of particle numbers and PAH concentrations was performed before, during, and after biomass burning, and these concentrations were seen to be very dependent on factors such as weather conditions, combustion efficiency, and temperature (smoldering versus flaming conditions), and moisture content of the wood burned.  相似文献   
987.
In order to assess indoor air quality (IAQ), two 1-week monitoring campaigns of volatile organic compounds (VOC) were performed in different areas of a multistorey shopping mall. High-spatial-resolution monitoring was conducted at 32 indoor sites located in two storehouses and in different departments of a supermarket. At the same time, VOC concentrations were monitored in the mall and parking lot area as well as outdoors. VOC were sampled at 48-h periods using diffusive samplers suitable for thermal desorption. The samples were then analyzed with gas chromatography–mass spectrometry (GC–MS). The data analysis and chromatic maps indicated that the two storehouses had the highest VOC concentrations consisting principally of terpenes. These higher TVOC concentrations could be a result of the low efficiency of the air exchange and intake systems, as well as the large quantity of articles stored in these small spaces. Instead, inside the supermarket, the food department was the most critical area for VOC concentrations. To identify potential emission sources in this department, a continuous VOC analyzer was used. The findings indicated that the highest total VOC concentrations were present during cleaning activities and that these activities were carried out frequently in the food department. The study highlights the importance of conducting both high-spatial-resolution monitoring and high-temporal-resolution monitoring. The former was able to identify critical issues in environments with a complex emission scenario while the latter was useful in interpreting the dynamics of each emission source.  相似文献   
988.
This study evaluates effects of good burning practice and correct installation and management of wood heaters on indoor air pollution in an Italian rural area. The same study attests the role of education in mitigating wood smoke pollution. In August 2007 and winters of 2007 and 2008, in a little mountain village of Liguria Apennines (Italy), indoor and outdoor benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations were measured in nine wood-heated houses. During the first sampling, several mistakes in heating plant installations and management were found in all houses. Indoor BTEX concentrations increased during use of wood burning. Low toluene/benzene ratios were in agreement with wood smoke as main indoor and outdoor pollution source. Other BTEX sources were identified as the indoor use of solvents and paints and incense burning. Results obtained during 2007 were presented and discussed with homeowners. Following this preventive intervention, in the second winter sampling all indoor BTEX concentrations decreased, in spite of the colder outdoor air temperatures. Information provided to families has induced the adoption of effective good practices in stoves and fire management. These results highlight the importance of education, supported by reliable data on air pollution, as an effective method to reduce wood smoke exposures.
Implications:Information about burning practices and correct installation and management of wood heaters, supported by reliable data on indoor and outdoor pollution, may help to identify and remove indoor pollution sources. This can be an effective strategy in mitigate wood smoke pollution.  相似文献   
989.
Bioprocesses, such as biofiltration, are commonly used to treat industrial effluents containing volatile organic compounds (VOCs) at low concentrations. Nevertheless, the use of biofiltration for indoor air pollution (IAP) treatment requires adjustments depending on specific indoor environments. Therefore, this study focuses on the convenience of a hybrid biological process for IAP treatment. A biofiltration reactor using a green waste compost was combined with an adsorption column filled with activated carbon (AC). This system treated a toluene-micropolluted effluent (concentration between 17 and 52 µg/m3), exhibiting concentration peaks close to 733 µg/m3 for a few hours per day. High removal efficiency was obtained despite changes in toluene inlet load (from 4.2 × 10?3 to 0.20 g/m3/hr), which proves the hybrid system’s effectiveness. In fact, during unexpected concentration changes, the efficiency of the biofilter is greatly decreased, but the adsorption column maintains the high efficiency of the entire process (removal efficiency [RE] close to 100%). Moreover, the adsorption column after biofiltration is able to deal with the problem of the emission of particles and/or microorganisms from the biofilter.
ImplicationsIndoor air pollution is nowadays recognized as a major environmental and health issue. This original study investigates the performance of a hybrid biological process combining a biofilter and an adsorption column for removal of indoor VOCs, specifically toluene.  相似文献   
990.
Isotopic measurements of the 34 m3/s discharge from the Fall River Springs of northern California indicate recharge from 50 km upgradient in high elevation regions of Medicine Lake Volcano. Age determinations suggest less than 20-year travel time. Data demonstrate Klamath Basin further north cannot be a recharge source. Mass balance calculations support that annual precipitation on the volcano supplies observed spring discharge, requiring 50%–75% recharge rates. Radiocarbon and δ13C of dissolved inorganic carbon indicate 30%–40% is derived from magmatic CO2. Measured excess 3He is also consistent with the presence of magmatic gas derived from the Quaternary Age Medicine Lake Volcano.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号