首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
安全科学   2篇
废物处理   1篇
环保管理   12篇
综合类   5篇
基础理论   9篇
污染及防治   10篇
评价与监测   2篇
  2021年   1篇
  2015年   1篇
  2013年   2篇
  2011年   2篇
  2010年   2篇
  2008年   3篇
  2007年   1篇
  2005年   2篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1975年   2篇
  1972年   1篇
排序方式: 共有41条查询结果,搜索用时 0 毫秒
11.
危险废物回转窑焚烧系统的工艺设计   总被引:4,自引:0,他引:4  
介绍杭州市危险废物回转窑焚烧处理示范工程的一期规模、工艺流程及主要设备的设计方法。  相似文献   
12.
13.
14.
Sorption of organic contaminants to soils has been shown to limit bioavailability and biodegradation in some systems. Use of surfactants has been proposed to reverse this effect. In this study, the effects of a high organic carbon content soil and a nonionic surfactant (Triton X-100) on the reductive dechlorination of carbon tetrachloride (CCl4) were examined in anaerobic systems containing Shewanella putrefaciens. Although more than 70% of the added CCl4 was sorbed to the soil phase in these systems, the reductive dechlorination of CCl4 was not diminished. Rather, rates of CCl4 dechlorination in systems containing soil were enhanced relative to systems containing non-sorptive sand slurries. This enhancement was also observed in sterile soil slurries to which a chemical reductant, dithiothreitol was added. It appears that the organic soil used in these experiments contains some catalytic factor capable of transforming CCl4 in the presence of an appropriate chemical or microbial reductant. The addition of Triton X-100 to sand and soil slurries containing S. putrefaciens resulted in increased CCl4 degradation in both systems. The effect of Triton could not be explained by: (i) surfactant induced changes in the distribution of CCl4, (i.e. decreased sorption) or the rate of CCl4 desorption; (ii) a direct reaction between Triton and CCl4; or (iii) increased cell numbers resulting from use of the surfactant as a substrate. Rather, it appears that Triton X-100 addition resulted in lysis of bacterial cells, a release of biochemical reductant, and enhanced reductive transformation of CCl4. These results provide insights to guide the development of more effective direct or indirect bioremediation strategies.  相似文献   
15.
朱倩 《福建环境》2003,20(2):57-61
该文分析了福建炼化公司炼油污水现状,提出炼油污水回用的可能方式,并进行了初步探讨。  相似文献   
16.
Following a lag of 3 to 18 h, acetylene reduction in mannitol-amended sand systems proceeded at approximately constant and high rates for periods up to 4 days. Carbon dioxide production and O2 consumption were low in these systems in comparison to similar systems additionally amended with ammonium, indicating N-limitation of growth in the former. Thus, long-term acetylene assays of mannitol-amended sand and suspensions from the sand incubated at various partial pressures of oxygen could be used to characterize the O2-sensitivity of the N2-fixing bacterial population as a whole, in batch-type systems with a minimal degree of enrichment or change in pO2 during the course of the assays. Results of various studies suggested that aerobic or microaerophilic N2-fixing bacteria were absent or scarce in the sand, and that nitrogenase activity occurring in aerobically incubated systems occurred in anaerobic microenvironments. Hydrogen stimulated acetylene-reducing activity, but the time course differed from that of mannitol-supported activity, and proceeded with shorter lags in systems incubated at 0.2 and 0.05 atm O2 than in systems incubated anaerobically. Efficiency of N2 fixation [C2H2] increased with decreasing initial mannitol concentration. For sand washed with seawater to remove native combined inorganic nitrogen, and amended with 0.015% mannitol, 374 μmoles added NH4-N/kg wet sand caused almost complete repression of nitrogenase activity, while concentrations as low as 12 μmoles added NH4-N/kg wet sand appeared to cause at least partial repression of nitrogenase activity. Some implications of these results for the existence of anaerobic microenvironments in the cavities of skeletal carbonates, and for N2-fixation in the seagrass rhizosphere are discussed.  相似文献   
17.
Recent developments of safer formulations of agrochemicals   总被引:2,自引:0,他引:2  
The primary objectives of formulation technology are to optimise the biological activity of the pesticide, and to give a product which is safe and convenient for use. However, because of the wide variety of pesticide active ingredients which are available, many different types of formulations have been developed depending mainly on the physico-chemical properties of the active ingredients. In the past most formulations were based on simple solutions in water (SL), emulsifiable concentrates in a petroleum-based solvent (EC), or dusts (DP) and wettable powders (WP). The presence of petroleum-based solvents in EC formulations and dusty powders in DP and WP formulations can lead to safety hazards in use and a negative impact on the envirnoment generally. Most government and regulatory authorities are now demanding formulations which are cleaner and safer for the user, have minimal impact on the environment, and can be applied at the lowest dose rate. Developments in formulation technology and novel formulation types, sometimes in special packaging such as water-soluble packs, can also give products a competitive advantage, add value or extend the lif-cycle of active ingredients. There is also a demand from government authorities and consumer groups to use safer formulation additives and adjuvants, and to minimise the residues of pesticides on food crops after spraying. All of these aspects are putting increasing pressure on the development of improved formulation and adjuvant technologies. Pesticide formulations for spray application and for seed treatment are discussed, along with developments in bioenchancement.  相似文献   
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号