The aim of this study was to use a new approach to investigate aeolian particle granulometry and micromorphology. Taking total aeolian deposition into account, we used parameters such as, particle area, perimeter, shape analysis for particle roughness (area/perimeter) and elongation (long/short axis). These parameters were analyzed on temporal and spatial scales at four study sites in the eastern Negev Desert, Israel. The total collection of particles was sorted into three size groups based on particle area to facilitate comparison. The classic definition of particle size (equating particle length with particle diameter) produced relatively small variations among the three size classes (25-38.6%). Our proposed comprehensive method demonstrated significant variation among the three size classes (13.9-60.8%), e.g. the classic method placed 36.4% of the particles in size class two while the new method placed 60.8% of the particles in this size class; the differences were even more significant regarding size class 3 (38.6% vs. 13.9%, respectively). The classic method did not facilitate investigation of particle roughness and elongation. With this new approach, it was possible to clearly define the particles by size class, based on these characteristics. With roughness, the variation among size classes 2 and 3 was about 27%. With elongation, the variation among size classes two and three was about 21%. Applying similar investigation method to study the aeolian particle granulometry and micromorphology can better facilitate more detailed calculation of particle size distribution, roughness and elongation. 相似文献
Oil contamination has become a primary environmental concern due to increased exploration, production, and use. When oil enters the soil, it may attach or adsorb to soil particles and stay in the soil for an extended period, contaminating the soil and surrounding areas. Nanoparticles have been widely used for the treatment of organic pollutants in the soil. Surfactant foam has effectively been employed to remediate various soil contaminants or recover oil compounds. In this research, a mixture of biosurfactant foam/nanoparticle was utilized for remediation of oil-contaminated soil. The results demonstrated that the biosurfactant/nanoparticle mixture and nitrogen gas formed high-quality and stable foams. The foam stability depended on the foam quality, biosurfactant concentration, and nanoparticle dosage. The pressure gradient change in the soil column relied on the flowrate (N2 gas + surfactant/nanoparticle mixture), foam quality, and biosurfactant concentration. The optimal conditions to obtain good quality and stable foams and high oil removal efficiency involved 1 vol% rhamnolipid, 1 wt% nanoparticle, and 1 mL/min flowrate. Biosurfactant foam/nanoparticle mixture was effectively used to remediate oil-contaminated soil, whereas the highest treatment efficiency was 67%, 59%, and 52% for rhamnolipid biosurfactant foam/nanoparticle, rhamnolipid biosurfactant/nanoparticle, and only rhamnolipid biosurfactant, respectively. The oil removal productivity decreased with the increase of flowrate due to the shorter contact time between the foam mixture and oil droplets. The breakthrough curves of oil pollutants in the soil column also suggested that the foam mixture’s maximum oil treatment efficiency was higher than biosurfactant/nanoparticle suspension and only biosurfactant.
In this paper we present the results of the photocatalytic disinfection of urban waste water. Two microbial groups, total coliforms and Streptococcus faecalis, have been used as indexes to test disinfection efficiencies. Different experimental parameters have been checked, such as the effect of TiO2, solar or UV-lamp light and pH. Disinfection of water samples has been achieved employing both UV-lamp and solar light in agreement with data shown by other authors. The higher disinfection rates obtained employing an UV-lamp may be explained by the stronger incident light intensity. Nevertheless no consistent differences have been found between TiO2-photocatalysis and direct solar or UV-lamp light irradiation at natural sample pH (7.8). At pH 5 the presence of TiO2 increases the relative inactivation rate compared with the absence of the catalyst. After the photocatalytic bacterial inactivation, the later bacterial reappearance was checked for total coliforms at natural pH and pH 5, with and without TiO2. Two h after the photocatalytic treatment, CFU increment was almost nill. But 24 and 48 h later an important bacterial CFU increment was observed. This CFU increment is slower after irradiation with TiO2 at pH 5 in non-air-purged samples. 相似文献
We compared experimental and calculated logP values using a data set of 235 pesticides and experimental values from four different sources: The Pesticide Manual, Hansch Manual, ANPA and KowWin databases. LogP were calculated with four softwares: HyperChem, Pallas, KowWin and TOPKAT. Crossed comparison of the experimental and calculated values proved useful, especially for pesticides. These are harder to study than simpler organic compounds. Structurally they are complex, heterogeneous and similar to drugs from a chemical point of view. They offer an interesting way to verify the goodness of the different methods. Other studies compared several logP predictors using a single set of experimental values taken as a reference. Here we discuss the utility of the different logP predictors, with reference to experimental data found in different databases. This offers three advantages: (1) it avoids bias due to the assumption that one single data set is correct; (2) a given predictor can be developed on the same data set used for evaluation; (3) it takes account of experimental variability and can compare it with the predictor's variability. In our study Pallas and KowWin gave the best results for prediction, followed by TOPKAT. 相似文献
The radiate-accretive growth process of the spongeHaliclona oculata, under different environmental conditions, is simulated in a two-dimensional model with fractal modelling techniques. In this model material is added in layers to the object, and growth velocities attain highest values at its protrusions. With this model some aspects of the growth process can be explained. It is possible to simulate thin-branching growth forms, which are normally found under sheltered conditions, and plate-like forms, which are typical for sites more exposed to water movement. These simulated forms are compared with actual growth forms in order to test the validity of the model. 相似文献
The toxicity of oil sands process-affected water (OSPW) has regularly been attributed to naphthenic acids, which exist in complex mixtures. If on remediation treatment (e.g., ozonation) or on entering the environment, the mixtures of these acids all behave in the same way, then they can be studied as a whole. If, however, some acids are resistant to change, whilst others are not, or are less resistant, it is important to establish which sub-classes of acids are the most toxic. 相似文献
Enactment of the Clean Air Act Amendments (CAAA) of 1990 has resulted in increased ambient air monitoring needs for industry, some of which may be met efficiently using open-path optical remote sensing techniques. These techniques include Fourier transform spectroscopy, differential optical absorption spectroscopy, laser long-path absorption, differential absorption lidar, and gas cell correlation spectroscopy. With this regulatory impetus, it is an opportune time to consider applying these technologies to the remote and/or path-averaged measurement and monitoring of toxic gases covered by the CAAA. This article reviews the optical remote sensing technology and literature for that application. 相似文献
The use of cement based materials will be widespread in the long-term management of radioactive materials in the United Kingdom. One of the applications could be the Nirex reference vault backfill (NRVB) as an engineered barrier within a deep geological repository. NRVB confers alkaline conditions, which would provide a robust chemical barrier through the control of the solubility of some key radionuclides, enhanced sorption and minimised corrosion of steel containers. An understanding of the dissolution of C-S-H gels in cement under the appropriate conditions (e.g., saline groundwaters) is necessary to demonstrate the expected evolution of the chemistry over time and to provide sufficient cement to buffer the porewater conditions for the required time. A programme of experimental work has been undertaken to investigate C-S-H gel dissolution behaviour in sodium chloride solutions and the effect of calcium/silicon ratio (C/S), temperature and cation type on this behaviour. Reductions in calcium concentration and pH values were observed with samples equilibrated at 45 degrees C compared to those prepared at 25 degrees C. The effect of salt cation type on salt-concentration dependence of the dissolution of C-S-H gels was investigated by the addition of lithium or potassium chloride in place of sodium chloride for gels with a C/S of 1.0 and 1.8. With a C/S of 1.0, similar increases in dissolved calcium concentration with increasing ionic strength were recorded for the different salts. However, at a C/S of 1.8, anomalously high calcium concentrations were observed in the presence of lithium. 相似文献
The genotoxicity of chromium chloride was investigated in cells of D7 strain of Saccharomyces cerevisiae harvested either from logarithmic or stationary growth phase. A weak induction of mifotic gene conversion and point reverse mutation was obtained when the incubations were performed using phosphate buffer. No genetic effect was observed when the incubations were performed using Tris‐HCl buffer. The experiments with 51Cr radiotracer demonstrated that Cr3+ ion enters the yeast cells and binds to DNA even if the incubation mixture was performed with Tris HCl buffer. This behaviour could be due to the highest concentration of CrCl3 that cause some damages to cytoplasmatic membrane. 相似文献