全文获取类型
收费全文 | 77篇 |
免费 | 1篇 |
专业分类
环保管理 | 10篇 |
综合类 | 3篇 |
基础理论 | 7篇 |
污染及防治 | 50篇 |
评价与监测 | 5篇 |
社会与环境 | 3篇 |
出版年
2023年 | 1篇 |
2021年 | 1篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2018年 | 3篇 |
2015年 | 4篇 |
2014年 | 2篇 |
2013年 | 7篇 |
2012年 | 3篇 |
2010年 | 1篇 |
2008年 | 3篇 |
2007年 | 3篇 |
2006年 | 2篇 |
2005年 | 1篇 |
2004年 | 1篇 |
2003年 | 4篇 |
2002年 | 2篇 |
2001年 | 2篇 |
2000年 | 3篇 |
1999年 | 3篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 3篇 |
1994年 | 3篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1991年 | 3篇 |
1990年 | 6篇 |
1989年 | 3篇 |
1988年 | 3篇 |
1987年 | 1篇 |
1962年 | 1篇 |
排序方式: 共有78条查询结果,搜索用时 0 毫秒
61.
Sagar Kafle Ranjan Parajuli Kshitij Adhikari Seung Hee Euh Kwang Cheol Oh Yun Sung Choi 《International Journal of Green Energy》2018,15(1):1-7
In the current study, the potential of forest-based biomass supply for the pellet production in Nepal is investigated. This study showed that about 2.76 million tonnes (Mt) biomass in the form of pellets are potentially available from forest-based biomass. Considering a processing capacity of 6 tonnes (t)/hr of a pellet plant, the production cost of the pellets was calculated to be $43.53/t. Pellets are generally used as fuel to produce thermal energy in industries, which helps to save the economy and the environment of the country. 相似文献
62.
63.
Santosh A. Kadapure Prasanna Kirti Sabhaya Singh Sagar Kokatnur Neeraj Hiremath Akhil Variar 《International Journal of Sustainable Engineering》2018,11(3):167-172
This work investigated the optimisation of biodiesel production from waste cooking oil (WCO) and palm oil using a two-step transesterification process for WCO and base catalysed transesterification for palm oil. Transesterification reactions were carried out to investigate the effects of prepared catalyst CaO, methanol/WCO and methanol/palm oil ratio and temperature on the yield of biodiesel. A series of experiments were conducted to determine the best conditions for biodiesel production, using methanol/oil ratio between 4:1 and 11:1 and contact time varying between 2 and 4 h. Biodiesel yield of around 90 and 70% was obtained for palm and waste cooking oil at the methanol/oil ratios of 6:1 and 8:1 at temperature of 60 °C for reaction time of 4 h using prepared CaO as catalyst. The physicochemical properties of palm and WCO biodiesel were carried out using standard methods, while the fatty acid profile was determined using gas chromatography. The investigation concludes that biodiesel obtained from palm and waste cooking oil was within the specified limit. 相似文献
64.
Reece CF Krupa SV Jäger HJ Roberts SW Hastings SJ Oechel WC 《Environmental pollution (Barking, Essex : 1987)》1995,90(1):25-31
In the context of global climate change, an understanding of the long-term effects of increasing concentrations of atmospheric trace gases (carbon dioxide, CO(2), ozone, O(3), oxides of nitrogen, NO(x) etc.) on both cultivated and native vegetation is of utmost importance. Over the years, under field conditions, various trace gas-vegetation exposure methodologies with differing advantages and disadvantages have been used. Because of these variable criteria, with elevated O(3) or CO(2) levels, at the present time the approach of free-air experimental-release of the gas into study plots is attracting much attention. However, in the case of CO(2), this approach (using 15 m diameter study plot with a single circular array of vent pipes) has proven to be cost prohibitive (about 59000-98000 dollars/year/replicate) due to the consumption of significant quantities of the gas to perform the experiment (CO(2) level elevated to 400 ppm above the ambient). Therefore, in this paper, we present a new approach consisting of a dual, concentric exposure array of vertical risers or vent pipes. The purpose of the outer array (17 m diameter) is to vent ambient air outward and toward the incoming wind, thus providing an air curtain to reduce the velocity of that incoming wind to simulate the mode or the most frequently occurring wind speed at the study site. The inner array (15 m diameter) vents the required elevated levels of trace gases (CO(2), O(3), etc.) into the study plot. This dual array system is designed to provide spatial homogeneity (shown through diffusion modeling) of the desired trace-gas levels within the study plot and to also reduce its consumption. As an example, while in the single-array free-air CO(2)-release system the consumption of CO(2) to elevate its ambient concentration by 400 ppm is calculated to be about 980 tons/year/replicate, it is estimated that in the dual array system it would be approximately 590 tons/year/replicate. Thus, the dual array system may provide substantial cost savings (24000-39000 dollars/year/replicate) in the CO(2) consumption (60-100 dollars/ton of CO(2)) alone. Similarly, benefits in the requirements of other trace gases (O(3), NO(x), etc.) are expected, in future multivariate studies on global climate change. 相似文献
65.
Over the past several decades, numerous studies have been conducted on the impacts of air pollutants (air quality) on terrestrial ecosystems (crops and forests). Although ambient air is always composed of pollutant mixtures, in determining the relative air quality and its ecosystem impacts at a given geographic location and time, a predominant number of studies have shown that at the present time surface-level O(3) is the most important phytotoxic air pollutant. Within the North American Great Plains, the precursors for surface-level O(3) are mainly anthropogenic NO(x) and VOCs (volatile organic compounds). Texas and Alberta are the top regions of such emissions in the United States and Canada, respectively. This appears to be due mainly to the prevalence of natural gas and/or oil industry in the two regions and the consequent urbanization. Nevertheless, the total emissions of NO(x) and VOCs within the North American Great Plains represent only about 25-36% of the corresponding total emissions within the contiguous United States and the whole of Canada. Within the Great Plains many major crop and tree species are known to be sensitive to O(3). This sensitivity assessment, however, is based mainly on our knowledge from univariate (O(3) only) exposure-plant response studies. In the context of global climate change, in almost all similar univariate studies, elevated CO(2) concentrations have produced increases in plant biomass (both crop and tree species). The question remains as to whether this stimulation will offset any adverse effects of elevated surface O(3) concentrations. Future research must address this important issue both for the Great Plains and for all other geographic locations, taking into consideration spatial and temporal variabilities in the ambient concentrations of the two trace gases. 相似文献
66.
An eleven-year foliar sulphur (S) monitoring program was carried out from 1976 to 1986 near a sulphur recovery-gas plant in west-central Alberta, Canada, as part of a case study designed to determine the effects of chronic, low concentration sulphur gas emissions on the forest ecosystem surrounding the gas plant. Measurements of both foliar total sulphur (ST) and foliar inorganic sulphur (SO4-S) concentration in lodgepole x jack pine trees at the end of each of the 11 growing seasons were taken to provide an indication of S loading of the forest from industrial sulphur emissions. To measure the state of the forest ecosystem, foliar ST was separated into foliar accumulated sulphur (inorganic sulphur or SO4-S) and foliar assimilated sulphur (organic sulphur or S0) and the ratio of SO4-S/S0 taken. Foliar S0 was calculated as the difference between foliar ST and foliar SO4-S. The median SO4-S/S0 ratio, with all three years of needles considered, varied from 0.29 at a reference location (AV) to 0.88 at the location with the highest stress (AI). The corresponding mean values ranged from 0.3 at the reference location to 2.2 at the location of highest stress. The mean seasonal photosynthetic rate of current year's foliage of the pine trees and soil pH were reduced at a stressed location (AI) compared to the reference location (AV), between 1976 and 1981. Over this same time period the mean foliar SO4-S/S0 ratio increased from 0.4 +/- 0.1 to 1.0 +/- 0.3 at the stressed location (AI) and remained nearly the same at the reference location (AV) at 0.3 +/- 0.1. This research suggests that the foliar SO4-S/S0 ratio is a useful indicator of the state of forest ecosystems under S air pollution stress. It is concluded that foliar S separated into various fractions has potential as an early warning environmental management tool. 相似文献
67.
Growth season-based time series spectral coherence analysis was performed between weekly changes in hourly ambient O(3) concentrations and weekly changes in alfalfa height growth. Weekly median hourly O(3) concentration and the corresponding weekly cumulative integral (sum of all hourly concentrations within the week) were used as indicators of weekly O(3) spectral density and coherence with the change in weekly alfalfa height growth. In general, the weekly cumulative integral performed much better than the weekly median O(3) concentration. A conceptual analysis of the results is presented, along with a recommendation that crop growth stage-based cumulative integrals merit further evaluation towards a better understanding of cause-effect relationships. 相似文献
68.
In this paper an analysis is provided on: what we know, what we need to know, and what we need to do, to further our understanding of the relationships between tropospheric ozone (O(3)), global climate change and forest responses. The relationships between global geographic distributions of forest ecosystems and potential geographic regions of high photochemical smog by the year 2025 AD are described. While the emphasis is on the effects of tropospheric O(3) on forest ecosystems, discussion is presented to understand such effects in the context of global climate change. One particular strong point of this paper is the audit of published surface O(3) data by photochemical smog region that reveals important forest/woodland geographic regions where little or no O(3) data exist even though the potential threat to forests in those regions appears to be large. The concepts and considerations relevant to the examination of ecosystem responses as a whole, rather than simply tree stands alone are reviewed. A brief argument is provided to stimulate the modification of the concept of simple cause and effect relationships in viewing total ecosystems. Our knowledge of O(3) exposure and its effects on the energy, nutrient and hydrological flow within the ecosystem are described. Modeling strategies for such systems are reviewed. A discussion of responses of forests to potential multiple climatic changes is provided. An important concept in this paper is that changes in water exchange processes throughout the hydrological cycle can be used as early warning indicators of forest responses to O(3). Another strength of this paper is the integration of information on structural and functional processes of ecosystems and their responses to O(3). An admitted weakness of this analysis is that the information on integrated ecosystem responses is based overwhelmingly on the San Bernardino Forest ecosystem research program of the 1970s because of a lack of similar studies. In the final analysis, it is recommended that systems ecology be applied in examining the joint effects of O(3), carbon dioxide and ultraviolet-B radiation on forest ecosystems. 相似文献
69.
Stanley NJ Kuehn TH Kim SW Raynor PC Anantharaman S Ramakrishnan MA Goyal SM 《Journal of environmental monitoring : JEM》2008,10(4):474-481
Background culturable bacteria aerosols were collected and identified in two large public buildings located in Minneapolis, Minnesota and Seattle, Washington over a period of 5 months and 3 months, respectively. The installed particulate air filters in the ventilation systems were used as the aerosol sampling devices at each location. Both pre and final filters were collected from four air handing units at each site to determine the influence of location within the building, time of year, geographical location and difference between indoor and outdoor air. Sections of each loaded filter were eluted with 10 ml of phosphate buffered saline (PBS). The resulting solutions were cultured on blood agar plates and incubated for 24 h at 36 degrees C. Various types of growth media were then used for subculturing, followed by categorization using a BioLog MicroStation (Biolog, Hayward, CA, USA) and manual observation. Environmental parameters were gathered near each filter by the embedded on-site environmental monitoring systems to determine the effect of temperature, humidity and air flow. Thirty nine different species of bacteria were identified, 17 found only in Minneapolis and 5 only in Seattle. The hardy spore-forming genus Bacillus was the most commonly identified and showed the highest concentrations. A significant decrease in the number of species and their concentration occurred in the Minneapolis air handling unit supplying 100% outdoor air in winter, however no significant correlations between bacteria concentration and environmental parameters were found. 相似文献
70.
Reddy MV Babu KS Balaram V Satyanarayanan M 《Environmental monitoring and assessment》2012,184(4):1991-2000
The surface water qualities of Hussainsagar, an eutrophic urban lake in the midst of twin cities of Hyderabad and Secunderabad
(India) receiving large quantities of external inputs—both untreated municipal sewage containing industrial effluents, and
treated sewage, a large number of annually immersed idols of God and Goddess, and intense boating activities were assessed
in relation to the concentration of elements including heavy metals of the water along the necklace road of the lake. Elemental
analyses of water using ICP-MS revealed 26 elements including heavy metals—As, Cd, Cr, Ni, Pb, Cu, Fe, Mn, Se, Ba, Zn, Mo,
V, Co, Ag, Sr, Rb, Mg, K, Ca, Al, Si, Sb, Na, Li, and B, in the surface water of the lake. Of these, the first 15 elements
were found in elevated concentrations in the water at the outfall point of the untreated municipal sewage (site 3), which
was the main dominating source of contamination of the lake water while Cu and Sb were recorded in higher concentrations at
the outfall of treated effluent from Sewage Treatment Plant, and three elements (Ba, Si, and B) were in higher concentration
at the sites of outfall of sewage flowing from an oxygenated pond (site 4), Ca, Zn, and Sr, at the site immersed with idols
(site 1), and Pb, Ag, and Al at the center of the lake (site 5) with intense boating activities. Concentrations of most of
these elements exceeded the maximum permissible limits of national (Indian Council Medical Research) standards for drinking
water. The concentrations of most of the elemental contaminants showed significant positive correlations between them. 相似文献