首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   6篇
  国内免费   21篇
安全科学   9篇
环保管理   1篇
综合类   37篇
基础理论   5篇
污染及防治   15篇
评价与监测   6篇
社会与环境   2篇
  2024年   2篇
  2023年   2篇
  2022年   6篇
  2021年   5篇
  2020年   7篇
  2019年   6篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   8篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2006年   1篇
  2004年   1篇
  2001年   1篇
  2000年   2篇
排序方式: 共有75条查询结果,搜索用时 31 毫秒
41.
为探索北京城区大气细颗粒物( PM2. 5) 及其各组分的浓度特征,于 2019 年全年在车公庄地区开展了 PM2. 5及水溶性离子、碳质组分及金属元素的连续在线监测. 结果表明,2019 年北京城区 ρ( PM2. 5) 平均值为 46. 7 μg·m- 3,化学组分中 ρ[有机物( OM) ]、ρ( NO3-) 、ρ( SO42-) 、ρ( NH4+) 、ρ( EC) 、ρ( Cl-) 、ρ( 微量元素) 和 ρ( 地壳物质) 分别为 9. 1、11. 1、5. 7、5. 4、1. 4、0. 9、1. 6 和 7. 3 μg·m- 3,SNA ( SO42-、NO3-和 NH4+) 合计占到了...  相似文献   
42.
为研究武汉市大气质量状况,在武汉市ID(工业区)、DT(中心城区)、BG(植物园)设3个采样点,连续1 a同步采集了大气中的PM2.5(细颗粒物)样品,并研究了其中PAHs(多环芳烃)的质量浓度、来源和健康风险.结果表明,武汉市ID、DT、BG采样点的ρ(PAHs)年均值分别为(75.60±28.12)(59.77±22.81)(24.27±9.15)ng/m3,并呈冬季最高、夏季最低的季节性变化趋势.PMF(正定矩阵因子分析)结果显示,ID、DT、BG采样点的PAHs的主要来源分别为燃煤和扬尘(35%和33%)、机动车和扬尘(30%和34%)、机动车和木质燃烧(33%和32%),在ID和DT采样点,扬尘对大气颗粒物中PAHs的贡献都很大,而燃煤和木质燃烧分别是ID和BG采样点PAHs的重要来源,在3个采样点中,机动车对颗粒物中PAHs贡献都较大,尤其是DT和BG采样点,机动车的贡献都超过30%.利用后向轨迹模型分析采样期间武汉市的气团来源,并结合每天的ρ(PAHs)发现,不同聚类气团对应的ρ(PAHs)差异很小,表明区域传输对武汉市PAHs贡献不大.通过武汉市大气颗粒物中PAHs吸入风险评估发现,武汉市PAHs的吸入风险范围在10-7~10-5之间,ID和DT采样点的部分人群的吸入风险稍高于安全范围(10-6以下),有潜在的致癌风险.   相似文献   
43.
底泥曝气对城市污染河道内源氮变化过程的影响   总被引:4,自引:0,他引:4  
许宽  刘波  王国祥  周锋  凌芬  杜旭 《环境科学学报》2012,32(12):2935-2942
以城市重污染河道上覆水和沉积物为研究对象,采用模拟实验方法,探讨了底泥曝气对城市污染河道内源氮变化过程的影响.结果表明:底泥曝气促进内源氮去除和有机质分解,泥水系统氮素去除率比对照组高出5%,对照组有机质升高35.1%,而底泥曝气组有机质却基本维持不变;底泥曝气促进氨氮的迁移与转化,曝气阶段上覆水、表层底泥间隙水和吸附态氨氮浓度分别降低了99.5%、94.4%和75.6%;底泥曝气时有机质分解促使有机氮浓度升高,曝气结束后有机氮的矿化作用与有机质的分解作用共同影响内源无机氮的含量;底泥曝气直接改变了底泥的理化性质,继而在一定程度上改变底泥氮素的赋存情况,含水率与表层间隙水和底泥的有机氮、无机氮均呈显著相关,表层无机氮与亚铁显著相关,内源氮变化与有机质无显著相关性.  相似文献   
44.
还原环境(如湖泊、海洋沉积物)中,FeS是重金属的重要载体。在富营养化过程中,磷酸盐可能对重金属在FeS上的吸附行为产生重要影响。本文通过不同pH、磷酸盐浓度的批次试验,结合X射线衍射仪(XRD)和场发射透射电子电镜-能谱仪(TEM-EDS)固体分析手段,进行磷酸盐对FeS吸附Sb(Ⅲ)的影响研究。结果表明:酸性和中性条件下,磷酸盐会与FeS溶解释放的Fe(Ⅱ)反应生成磷酸亚铁沉淀,促进FeS溶解,同时释放出更多的H2S(aq)/HS-与Sb(Ⅲ)结合形成Sb2S3沉淀,从而促进溶液中Sb(Ⅲ)的吸附。碱性条件下,FeS对Sb(Ⅲ)只有吸附作用,而磷酸盐会占据FeS表面部分的吸附位点,与Sb(Ⅲ)形成竞争关系,进而抑制溶液中Sb(Ⅲ)的吸附。  相似文献   
45.
通过不同温度煅烧改性实验比较,选择用800℃煅烧的钛白石膏作为吸附剂,研究其对阳离子染料罗丹明B(Rhodamine B,RhB)的吸附特性。利用XRD,SEM,BET对改性钛白石膏进行表征,考察了溶液pH,温度,接触时间,投加量对吸附的影响。结果表明,当RhB溶液质量浓度为9.58 mg/L,pH值为7.0,吸附剂投加量为2 g/L,吸附时间为150 min时,改性钛白石膏对RhB的最大吸附量为2.3 mg/g,较原土提高了140.1%左右。溶液温度和吸附剂投加量对钛白石膏吸附RhB吸附有很大的影响。利用准一阶,准二阶动力学模型对吸附数据进行模拟,发现该吸附过程更符合准二阶动力学模型,Langmuir和Freundlich两种吸附等温模型都能较好地描述改性钛白石膏吸附RhB的过程。通过热力学计算,得到△H0为18.5 kJ/mol,△G0<0,表明该吸附反应为自发进行的吸热反应。  相似文献   
46.
以某电厂冷却塔循环冷却水为处理对象,利用电絮凝法,以铝板为牺牲阳极去除水中的Ca2+和Mg2+,分别考察了电絮凝过程中不同电流密度、电解时间、溶液初始pH、阳极极板数量对总硬度去除率的影响。结果表明:增加电流密度、延长电解时间有利于Ca2+和Mg2+的去除;当电流密度为10 mA·cm−2,电解时间为90 min时,Ca2+和Mg2+去除率分别达到93.5%和95.8%,总硬度去除率为94.6%;相对于酸性和中性条件,碱性条件更有利于Ca2+和Mg2+的去除,当初始pH为10时,Ca2+和Mg2+去除率分别达到85.4%和97.7%,总硬度去除率为93.5%;随极板数量的增加,Ca2+和总硬度去除率均有所提高;投加Na2CO3有利于Ca2+和总硬度的去除。上述结果可为进一步提高电絮凝过程中总硬度的去除率提供参考。  相似文献   
47.
毛竹枯梢病病原菌毒素的生物测定及成分研究   总被引:3,自引:0,他引:3  
毛竹枯梢病病原菌培养液的不同浓度粗提液对高粱胚根抑制率明显大于对胚芽抑制率,胚根对毒素的敏感性大于胚芽对毒素的敏感性;在121℃加热15分钟,胰蛋白酶处理2hr后,培养滤液对胚根和胚芽的抑制作用与对照比较无差异;培养滤液及粗提液经过透析后,毒性显著降低,并且透析后的培养滤液对胚根已无抑制作用;通过α-萘酚反应、班乃德反应和茚三酮反应等化学测定和薄层层析进一步分析表明毒素为一种分子量较小、且含有葡萄糖和果糖或两者其一的还原性多糖。  相似文献   
48.
火灾荷载的选取是设计火灾的重要环节,同时也是保证火灾风险评估科学可靠的关键因素。火灾荷载的实地调查和统计分析是火灾荷载研究工作的重要手段。通过对全国各地23家KTV娱乐场所的349个包间进行调查,统计出KTV包间可燃物种类、质量情况以及不同可燃物所占质量比。并且,通过调查得出KTV包间的面积情况。对所调查的349个包间的火灾荷载分布情况进行研究,利用数理统计的方法得到了该类场所火灾荷载密度、均值、最大值、最小值等数据,为火灾风险评估中火灾场景的设计提供了数据基础。  相似文献   
49.

The formation of gas hydrates is a major issue during the operation of oil and gas pipelines, because gas hydrates cause plugging, thereby disrupting the normal oil and gas flows. A solution is to inject gas hydrate inhibitors such as ionic liquids. Contrary to classical inhibitors, ionic liquids act both as thermodynamic inhibitors and hydrate inhibitors, and as anti-agglomerates. Imidazolium-based ionic liquids have been found efficient for the inhibition of CO2 and CH4 hydrates. For CO2 gas hydrates, N-ethyl-N-methylmorpholinium bromide showed an average depression temperature of 1.72 K at 10 wt% concentration. The induction time of 1-ethyl-3-methyl imidazolium bromide is 36.3 h for CO2 hydrates at 1 wt% concentration. For CH4 hydrates, 1-ethyl-3-methyl-imidazolium chloride showed average depression temperature of 4.80 K at 40 wt%. For mixed gas hydrates of CO2 and CH4, only quaternary ammonium salts have been studied. Tetramethyl ammonium hydroxide shifted the hydrate liquid vapour equilibrium to 1.56 K at 10 wt%, while tetrabutylammonium hydroxide showed an induction time of 0.74 h at 1 wt% concentration.

  相似文献   
50.
Double perovskite-type catalysts including La2 CoMnO_6 and La_2 CuMnO_6 are first evaluated for the effectiveness in removing volatile organic compounds(VOCs), and single perovskites(La CoO_3, LaMnO_3, and La Cu O3) are also tested for comparison. All perovskites are tested with the gas hourly space velocity(GHSV) of 30,000 hr~(-1), and the temperature range of100–600°C for C_7H_8 removal. Experimental results indicate that double perovskites have better activity if compared with single perovskites. Especially, toluene(C_7H_8) can be completely oxidized to CO_2 at 300°C as La2 Co MnO_6 is applied. Characterization of catalysts indicates that double perovskites own unique surface properties and are of higher amounts of lattice oxygen,leading to higher activity. Additionally, apparent activation energy of 68 k J/mol is calculated using Mars-van Krevelen model for C7 H8 oxidation with La2 Co Mn O6 as catalyst. For durability test, both La2 Co Mn O6 and La_2 CuMnO_6 maintain high C7 H8 removal efficiencies of 100% and98%, respectively, at 300°C and 30,000 hr~(-1), and they also show good resistance to CO_2(5%) and H2 O(g)(5%) of the gas streams tested. For various VOCs including isopropyl alcohol(C_3H_8 O),ethanal(C_2H_4O), and ethylene(C_2H_4) tested, as high as 100% efficiency could be achieved with double perovskite-type catalysts operated at 300–350°C, indicating that double perovskites are promising catalysts for VOCs removal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号