首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
基础理论   6篇
污染及防治   9篇
评价与监测   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2006年   6篇
  2005年   5篇
  2003年   1篇
  1997年   1篇
排序方式: 共有16条查询结果,搜索用时 62 毫秒
11.
12.
Water polluted with arsenic presents a challenge for remediation. A combination of phyto- and electro-remediation was attempted in this study. Four tanks were setup in order to assess the arsenic removal ability of the two methods separately and in combination. Lemna minor was chosen for As remediation and collected from a ditch in Utrecht, The Netherlands. The tanks were filled with surface water without any pre-cleaning, therefore containing various elements including metals as Mn (2.9 mg L(-1)), Cu (0.05 mg L(-1)), Fe (1.39 mg L(-1)), and Ba (0.13 mg L(-1)). This water was then spiked with As and allocated to a feed container, guaranteeing a continuous flow of 0.12 mL s(-1) to each tank. Two experiments were performed: Exp. 1 with 3 consecutive stages with rising applied voltage and Exp. 2, with a constant voltage over a period of 6 d. Measurements of pH and temperature were taken every working day, as well as water samples from outlets of all tanks including feed container for control. From the present study, there was no evidence that As had been taken up by the plants, but a strong depletion of As was observed in the tanks where current was applied. Preliminary results clearly showed that applying voltage to the electrodes caused 90% removal of As from the spiked surface water.  相似文献   
13.
14.
15.
Fate of 14C-bisphenol A in soils   总被引:8,自引:0,他引:8  
Fent G  Hein WJ  Moendel MJ  Kubiak R 《Chemosphere》2003,51(8):735-746
Bisphenol A (BPA; 2,2-(4,4(')-dihydroxydiphenyl)propane) is predominantly used as an intermediate in the production of polycarbonate plastics and epoxy resins. Traces of BPA released into the environment can reach the soil via application of sewage sludge from wastewater treatment systems that receive wastewaters containing BPA, or from leachate from uncontrolled landfills. The biodegradability of BPA has been previously investigated in several studies designed to simulate surface waters and biological wastewater treatment systems. However, there is little information available about the fate of BPA in soil. Therefore, laboratory soil degradation and batch adsorption studies were conducted with 14C-BPA and four soils according to international guidelines. The soils represented a broad range of physico-chemical properties. An important result of the degradation study was that, independent of the soil type, 14C-BPA was rapidly dissipated and not detectable in soil extracts following 3 days of incubation. Based on this result, a dissipation half-life of less than 3 days was estimated. The major route of dissipation of 14C-BPA in soil was the formation of bound residues that could not be recovered by exhaustive Soxhlet extraction. 14C-BPA was also shown to be transiently converted to up to five metabolites, but within 3 days, neither 14C-BPA nor 14C-metabolites were detectable in the soils. After 120 days incubation, significant amounts (up to 20% of the radioactivity applied) of the parent compound were recovered as 14CO(2). Soil adsorption experiments indicated that the distribution coefficients (K(oc)) were between 636 and 931, classifying BPA as having low mobility for all tested soils. From the results of this study, it was concluded that if BPA reaches the soil compartment, it is not expected to be stable, mobile, or bioavailable.  相似文献   
16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号