首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   4篇
  国内免费   13篇
安全科学   13篇
废物处理   21篇
环保管理   4篇
综合类   27篇
基础理论   26篇
环境理论   3篇
污染及防治   47篇
评价与监测   6篇
社会与环境   7篇
灾害及防治   1篇
  2023年   2篇
  2022年   4篇
  2021年   2篇
  2019年   1篇
  2018年   6篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   10篇
  2012年   7篇
  2011年   16篇
  2010年   9篇
  2009年   13篇
  2008年   16篇
  2007年   14篇
  2006年   9篇
  2005年   9篇
  2004年   9篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1984年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有155条查询结果,搜索用时 109 毫秒
151.
泳动床技术处理高浓度废水特性研究   总被引:1,自引:0,他引:1  
熊本大学自然科学研究院,熊本860-8555,日本  相似文献   
152.
Although the colour of butterflies attracts the most attention, the waterproofing properties of their wings are also extremely interesting. Most butterfly wings are considered “super-hydrophobic” because the contact angle (CA) with a water drop exceeds 150°. Usually, butterfly wings are covered with strongly overlapping scales; however, in the case of transparent or translucent wings, scale cover is reduced; thus, the hydrophobicity could be affected. Here, we present a comparative analysis of wing hydrophobicity and its dependence on morphology for two species with translucent wings Parantica sita (Nymphalidae) and Parnassius glacialis (Papilionidae). These species have very different life histories: P. sita lives for up to 6 months as an adult and migrates over long distance, whereas P. glacialis lives for less than 1 month and does not migrate. We measured the water CA and analysed wing morphology with scanning electron microscopy and atomic force microscopy. P. sita has super-hydrophobic wing surfaces, with CA > 160°, whereas P. glacialis did not (CA = 100–135°). Specialised scales were found on the translucent portions of P. sita wings. These scales were ovoid and much thinner than common scales, erect at about 30°, and leaving up to 80% of the wing surface uncovered. The underlying bare wing surface had a remarkable pattern of ridges and knobs. P. glacialis also had over 80% of the wing surface uncovered, but the scales were either setae-like or spade-like. The bare surface of the wing had an irregular wavy smooth pattern. We suggest a mode of action that allows this super-hydrophobic effect with an incompletely covered wing surface. The scales bend, but do not collapse, under the pressure of a water droplet, and the elastic recovery of the structure at the borders of the droplet allows a high apparent CA. Thus, P. sita can be translucent without losing its waterproof properties. This characteristic is likely necessary for the long life and migration of this species. This is the first study of some of the effects on the hydrophobicity of translucency through scales’ cover reduction in butterfly wings and on the morphology associated with improved waterproofing. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
153.
Journal of Material Cycles and Waste Management - Mechanical properties and slope stability of inert waste landfills under seismic condition were studied with three different approaches: in-situ...  相似文献   
154.
Gong Z  Yang F  Liu S  Bao H  Hu S  Furukawa K 《Chemosphere》2007,69(5):776-784
A laboratory-scale membrane-aerated biofilm bioreactor (MABR) equipped with non-woven fabrics support around the gas-permeable carbon tube was developed for single-stage autotrophic nitrogen removal based on partial nitrification and anaerobic ammonium oxidization. This reactor allowed air to be supplied through the microporous carbon tube wall to the biofilm that was supported by non-woven fabrics. The partial nitrification and consumption of dissolved oxygen occurred in the inner layer and Anammox in the anoxic outer layer of the non-woven fabrics, thus realizing autotrophic nitrogen removal in a single reactor. After 116d of operation, the maximal nitrogen removal of 0.77kgNm(-3)d(-1) at a volumetric ammonium loading rate of 0.87kgNm(-3)d(-1) was achieved. The spatial profiles of the ammonia-oxidizing bacteria and Anammox bacteria were evaluated by fluorescence in situ hybridization. This study demonstrated that MABR was a very suitable experimental set-up for the operation of the single-stage autotrophic nitrogen removal process.  相似文献   
155.

Mercury enters into the environment or waste streams because it is present as an impurity in natural minerals. Mercury must be appropriately managed as an hazardous waste. In this study, a waste layer of artificial mercury sulfide mixed with incinerator ash and sewage sludge compost in a simulated landfill experiment for 5 years was analyzed using microscopic synchrotron X-ray to obtain basic knowledge of mercury behavior in a landfill. Mapping by synchrotron X-ray revealed the distribution of mercury-containing particles in the waste layer. In most cases, the movement of mercury sulfide was not considered significant even within a microscopic range; however, water flows could enhance the movement of mercury sulfide particles. When disposing of mercury sulfide, “concentrated placement” or solidification, rather than mixing with other wastes, was more effective at preventing mercury leaching in lysimeters. The chemical form of mercury sulfide in each lysimeter was confirmed by X-ray absorption fine structure (XAFS) analysis, which showed that most of the mercury was present as metacinnabar and had not undergone any changes, indicating that it was extremely stable. The microscopic synchrotron X-ray analysis proved very useful for studying the behavior of mercury waste in a simulated landfill experiment.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号