首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   1篇
  国内免费   5篇
安全科学   4篇
废物处理   6篇
环保管理   24篇
综合类   24篇
基础理论   24篇
污染及防治   38篇
评价与监测   18篇
社会与环境   21篇
灾害及防治   1篇
  2022年   8篇
  2021年   7篇
  2020年   1篇
  2019年   5篇
  2018年   12篇
  2017年   8篇
  2016年   8篇
  2015年   7篇
  2014年   7篇
  2013年   7篇
  2012年   6篇
  2011年   7篇
  2010年   8篇
  2009年   9篇
  2008年   10篇
  2007年   8篇
  2006年   7篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2000年   3篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1984年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1958年   2篇
  1957年   1篇
排序方式: 共有160条查询结果,搜索用时 31 毫秒
121.
Rangelands represent one of the most important natural resources in mountainous regions of northern Nepal. However, a poor understanding of the social dimensions of rangeland use has limited their proper management and sustainable development, which represent major challenges for Nepal's resource managers. Institutional development is thought to be a viable solution to this problem and may ultimately lead to improved rangeland management in Nepal. Based on this hypothesis, a study was conduced in the Rasuwa district of northern Nepal to examine the effectiveness of institutional development at the local and national levels in mitigating the problems facing sustainable rangeland management by using an institutional analysis and development (IAD) framework. The information and data were mainly collected from different stakeholders, farmers, professionals and practitioners using a toolkit of participatory rural appraisal (PRA), workshops and literature review. It can be concluded from this case study that a number of institutional development efforts are needed to promote sustainable rangeland management in this region. First, local herders represent a repository of rich indigenous knowledge essential to sustaining sound rangeland management practices; hence, indigenous practices need to be integrated into modern technologies. Second, public services and technical support are currently unavailable or inaccessible to local herders; hence, research, development and extension interventions need to be initiated for marginalized pastoral communities. Third, rangeland institutions are incomplete and ill-organized, so institutional development of various organizations is necessary for promoting sustainable rangeland management. Fourth, the policies and governance necessary for promoting rangeland management are not well-designed; hence, governance reform and policy development need to be formulated through internal and external agencies and organizations.  相似文献   
122.
A study was carried out to assess the spatial distribution of arsenic in the intertidal sediments of the River Scheldt in Belgium. Sediment samples were collected from different locations along the River Scheldt up to 100 cm depth and analysed for the major physicochemical properties. The study reveals that the arsenic contents in the sediment samples vary in a wide range, from 2.3 to 140.2 mg kg(-1) dry weight. Moreover, the arsenic concentrations are generally below the background concentrations and remediation thresholds of arsenic in Flanders, Belgium. The occurrence of arsenic is found closely related to some physicochemical properties of the sediments. Arsenic has a strong positive correlation with organic matter and clay contents. On the contrary, a negative correlation exists between arsenic, sand and pH. It is recommended to develop and use organic matter control practices for lowering further accumulation of arsenic within the sediments.  相似文献   
123.
To estimate the contribution of transboundary transported air pollutants from other Asian countries to Japan in ionic concentrations in fog water in March 2005, the Community Multiscale Air Quality (CMAQ) modeling system was utilized with meteorological fields produced by the 5th generation Mesoscale Model (MM5). For meteorological predictions, the model well reproduced the surface meteorological variables, particularly temperature and humidity, and generally captured fog occurrence. For chemical predictions, most of the model-predicted monthly mean concentrations were approximately within a factor of 2 of the observations, indicating that the model well simulated the long-range atmospheric transport from the Asian Continent to Japan. For SO42?, NO3? and NH4+, the contribution rates of the transboundary air pollution in the Kinki Region of Japan ranged from 69 to 82% for aerosols, from 47 to 87% for ionic concentrations in rain, and from 55 to 79% for ionic concentrations in fog. The study found that the transboundary air pollution also affected ionic concentrations in fog as well as aerosol concentrations and ionic concentrations in rain.  相似文献   
124.
Biogeochemical C and N cycles in urban soils   总被引:8,自引:0,他引:8  
The percentage of urban population is projected to increase drastically. In 2030, 50.7 to 86.7% of the total population in Africa and Northern America may live in urban areas, respectively. The effects of the attendant increases in urban land uses on biogeochemical C and N cycles are, however, largely unknown. Biogeochemical cycles in urban ecosystems are altered directly and indirectly by human activities. Direct effects include changes in the biological, chemical and physical soil properties and processes in urban soils. Indirect effects of urban environments on biogeochemical cycles may be attributed to the introductions of exotic plant and animal species and atmospheric deposition of pollutants. Urbanization may also affect the regional and global atmospheric climate by the urban heat island and pollution island effect. On the other hand, urban soils have the potential to store large amounts of soil organic carbon (SOC) and, thus, contribute to mitigating increases in atmospheric CO(2) concentrations. However, the amount of SOC stored in urban soils is highly variable in space and time, and depends among others on soil parent material and land use. The SOC pool in 0.3-m depth may range between 16 and 232 Mg ha(-1), and between 15 and 285 Mg ha(-1) in 1-m depth. Thus, depending on the soil replaced or disturbed, urban soils may have higher or lower SOC pools, but very little is known. This review provides an overview of the biogeochemical cycling of C and N in urban soils, with a focus on the effects of urban land use and management on soil organic matter (SOM). In view of the increase in atmospheric CO(2) and reactive N concentrations as a result of urbanization, urban land use planning must also include strategies to sequester C in soil, and also enhance the N sink in urban soils and vegetation. This will strengthen soil ecological functions such as retention of nutrients, hazardous compounds and water, and also improve urban ecosystem services by promoting soil fertility.  相似文献   
125.
One of the targets of the United Nations ‘Millennium Development Goals’ adopted in 2000 is to cut in half the number of people who are suffering from hunger between 1990 and 2015. However, crop yield growth has slowed down in much of the world because of declining investments in agricultural research, irrigation, and rural infrastructure and increasing water scarcity. New challenges to food security are posed by accelerated climatic change. Considerable uncertainties remain as to when, where and how climate change will affect agricultural production. Even less is known about how climate change might influence other aspects that determine food security, such as accessibility of food for various societal groups and the stability of food supply. This paper presents the likely impacts of thermal and hydrological stresses as a consequence of projected climate change in the future potential agriculture productivity in South Asia based on the crop simulation studies with a view to identify critical climate thresholds for sustained food productivity in the region. The study suggests that, on an aggregate level, there might not be a significant impact of global warming on food production of South Asia in the short term (<2°C; until 2020s), provided water for irrigation is available and agricultural pests could be kept under control. The increasing frequency of droughts and floods would, however, continue to seriously disrupt food supplies on year to year basis. In long term (2050s and beyond), productivity of Kharif crops would decline due to increased climate variability and pest incidence and virulence. Production of Rabi crops is likely to be more seriously threatened in response to 2°C warming. The net cereal production in South Asia is projected to decline at least between 4 and 10% under the most conservative climate change projections (a regional warming of 3°C) by the end of this century. In terms of the reference to UNFCCC Article 2 on dangerous anthropogenic (human-induced) interference with the climate system, the critical threshold for sustained food productivity in South Asia appears to be a rise in surface air temperature of ~2°C and a marginal decline in water availability for irrigation or decrease in rainfall during the cropping season.  相似文献   
126.
Many of the world’s rural populations are dependent on the local provision of economically and medicinally important plant resources. However, increasing land-use intensity is depleting these resources, reducing human welfare, and thereby constraining development. Here we investigate a low cost strategy to manage the availability of valuable plant resources, facilitated by the use of isolated Ficus trees as restoration nuclei. We surveyed the plants growing under 207 isolated trees in Assam, India, and categorized them according to their local human-uses. We found that Ficus trees were associated with double the density of important high-grade timber, firewood, human food, livestock fodder, and medicinal plants compared to non-Ficus trees. Management practices were also important in determining the density of valuable plants, with grazing pressure and land-use intensity significantly affecting densities in most categories. Community management practices that conserve isolated Ficus trees, and restrict livestock grazing and high-intensity land-use in their vicinity, can promote plant growth and the provision of important local resources.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-015-0645-9) contains supplementary material, which is available to authorized users.  相似文献   
127.
Shrestha, Rajesh R., Yonas B. Dibike, and Terry D. Prowse, 2011. Modeling Climate Change Impacts on Hydrology and Nutrient Loading in the Upper Assiniboine Catchment. Journal of the American Water Resources Association (JAWRA) 48(1): 74‐89. DOI: 10.1111/j.1752‐1688.2011.00592.x Abstract: This paper presents a modeling study on climate‐induced changes in hydrologic and nutrient fluxes in the Upper Assiniboine catchment, located in the Lake Winnipeg watershed. The hydrologic and agricultural chemical yield model, Soil and Water Assessment Tool (SWAT) was employed to model a 21‐year baseline (1980‐2000) and future (2042‐2062) periods with model forcings for future climates derived from three regional climate models (RCMs) and their ensemble means. The modeled future scenarios reveal that potential future changes in the climatic regime are likely to modify considerably hydrologic and nutrient fluxes. The effects of future changes in climatic variables, especially precipitation and temperature, are clearly evident in the resulting snowmelt and runoff regimes. The future hydrologic scenarios consistently show earlier onsets of spring snowmelt and discharge peaks, and higher total runoff volumes. The simulated nutrient loads closely match the dynamics of the future runoff for both nitrogen and phosphorus, in terms of earlier timing of peak loads and higher total loads. However, nutrient concentrations could decrease due to the higher rate of runoff increase. Overall, the effects of these changes on the nutrient transport regime need to be considered together with possible future changes in land use, crop type, fertilizer application, and transformation processes in the receiving water bodies.  相似文献   
128.
Carbon emission from farm operations   总被引:42,自引:0,他引:42  
  相似文献   
129.
Mercury is a heavy metal which has garnered attention recently in India. Minamata Convention on mercury was established on October 2013 and was joined by India on September 30, 2014. India is seen as a major mercury pollution source after China according to many studies in the past. Various mercury pollution sites that are currently recognized in India are Kodai Lake, Kodaikanal, Tamil Nadu, and Thane Creek, Mumbai. Since 1992, chlor-alkali plants have been regulated to eliminate mercury cell process of manufacturing. Also, medical and health care facilities are discarding mercury-containing equipment and processes. Various anthropogenic sources of mercury to the atmosphere include combustion of fossil fuels, processing and mining of primary metal ores, cement manufacturing units, chlor-alkali plants, and use of mercury in various products like paints, electric switches, and relays. The hazard associated with mercury pollution becomes extremely serious when we consider its ability to be transported over long-range distances. Various atmospheric transport models suggest India and other Asian countries to be a major source of long-range transport of mercury to North America. Considering the hazards of mercury and its widespread presence in our life, a study on mercury pollution in an urban water body is conducted. This study deals with Mithi River located in Mumbai Metropolitan Region (19.0760° N, 72.8777° E) to study the total mercury in water and derive its relationship with other pollution parameters.  相似文献   
130.
Crop residues as soil amendments and feedstock for bioethanol production   总被引:3,自引:0,他引:3  
Traditional solid fuels account for more than 90% of the energy supply for 3 billion people in developing countries. However, liquid biofuels (e.g., ethanol) are perceived as an important alternative to fossil fuel. Global crop residue production is estimated at about 4 billion Mg for all crops and 3 billion Mg per annum for lignocellulosic residues of cereals. One Mg of corn stover can produce 280L of ethanol, compared with 400L from 1Mg of corn grains; 1Mg of biomass is also equivalent to 18.5GJ of energy. Thus, 3 billion Mg of residues are equivalent to 840 billion L of ethanol or 56x10(9)GJ of energy. However, removal of crop residues exacerbates soil degradation, increases net emission of CO2, and aggravates food insecurity. Increasing the SOC pool by 1 Mg C ha(-1)yr(-1) through residue retention on soil can increase world food grain production by 24-40 million Mg yr(-1), and root/tuber production by 6-11 million Mg yr(-1). Thus, identifying alternate sources of biofuel feedstock (e.g., biofuel plantations, animal waste, municipal sold waste) is a high priority. Establishing biofuel plantations on agriculturally marginal or degraded lands can off-set 3.5-4 Pg Cyr(-1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号