首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   2篇
  国内免费   23篇
安全科学   7篇
废物处理   13篇
环保管理   17篇
综合类   44篇
基础理论   14篇
污染及防治   54篇
评价与监测   15篇
社会与环境   3篇
灾害及防治   4篇
  2023年   2篇
  2022年   7篇
  2021年   8篇
  2020年   6篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   9篇
  2015年   5篇
  2014年   7篇
  2013年   21篇
  2012年   10篇
  2011年   5篇
  2010年   6篇
  2009年   11篇
  2008年   5篇
  2007年   7篇
  2006年   11篇
  2005年   8篇
  2004年   5篇
  2003年   6篇
  2002年   2篇
  2001年   6篇
  2000年   1篇
  1999年   5篇
  1998年   2篇
  1995年   2篇
  1989年   1篇
  1988年   1篇
排序方式: 共有171条查询结果,搜索用时 1 毫秒
91.
A large amount of hazardous materials and equipment has been extensively employed to produce useful chemicals for our daily lives, but many serious accidents, such as fires, explosions, toxic releases, and so on, that harm human beings and impact the environment have occurred during preparation, operation, and transportation of these chemicals. On 17 May 2007, a toxic release from a boiler explosion in a chemical firm triggered a large amount of xylene (7 ton), isopropanol (8 ton), phosphorus trichloride (44.7 ton), and dimethyl formamide (DMF) (1.37 ton) to be released to the atmosphere with total damages of 2000 m2 level ground. Through concerted efforts from the Yunlin Emergency Response Information Center (YERIC), sponsored by the Environmental Protection Administration (EPA) of Taiwan and other government sectors, this accident was eventually well controlled after 37 h with 107 people being involved in the rescue action. This study could be applied to lessen the degree of hazard for relevant accidents with an emergency response plan (ERP), and, via Fourier transform infrared (FTIR) spectroscopy and photo ionization detector (PID) the toxic concentrations of airborne chemicals that occurred in the industrial area could be analyzed.  相似文献   
92.
This study aimed to identify distribution of metals and to estimate the amount of these metals that can be potentially recovered from incineration residues. First, the partitioning behavior of Cr, Cu, Fe, Cd, Al, Zn, and Pb in bottom ash and fly ash was investigated in one large municipal waste incinerator in Taiwan. In addition, the material flow analysis (MFA) method was used to estimate the material flux of metals within incinerator plant, and to calculate the amount of metal recovery. According to the findings of this study, six metals (Fe, Al, Cu, Zn, Cr, and Pb) concentrated in bottom ash mostly, while Cd existed primarily in fly ash. The weight percentages of Fe (4.49%), Al (5.24%), Cu (1.29%), Zn (2.21%), and Pb (0.58%) in incinerator ash are high, and even higher than the compositions of natural minerals. Finally, the amount of Cr, Cu, Fe, Cd, Al, Zn and Pb that can be potentially recovered from incineration residues will reach 2.69 x 10(2), 1.46 x 10(4), 4.91 x 10(4), 6.92 x 10(1), 5.10 x 10(4), 1.85 x 10(4) and 4.66 x 10(3) ton/yr, respectively.  相似文献   
93.
针对电梯故障问题,提出一种将故障树分析法、改进的粒子群优化算法和概率神经网络相结合的方法用于电梯的故障诊断。以电梯的安全回路系统为例,用故障树法对回路进行分析,获得训练样本与故障类型;使用粒子群算法对概率神经网络的平滑因子进行优化,在优化过程中,针对粒子群算法存在易陷入局部最优的缺陷,提出对惯性权重的改进策略;采用相对误差对诊断效果做出评估,并与传统的概率神经网络和基本粒子群算法优化的概率神经网络在各种故障类型输出和最大相对误差等方面进行比较,结果表明:该模型能够有效诊断电梯故障。  相似文献   
94.
The process of delivering nanograde metal powders by a high-speed carrier gas is often subject to high explosion risks. This study adopted initial flow rates of 13.1, 8.5, 6.5, and 3.5 m/s for air transporting 30-nm titanium powder, 35-nm iron powder, and 35-nm aluminum powder to gauge the impact on a pipe bend in a 20-l-apparatus. The test results revealed that the 30-nm titanium powder caused an explosion at all initial flow rates; the 35-nm iron powder also caused an explosion, but dust explosion and sintering were eliminated when the flow rate was adjusted to less than 3.5 m/s; and the 35-nm aluminum powder exhibited no explosion or sintering at all flow rates. When pure nitrogen was used for transporting nanograde metal powders, no explosions occurred for all the three types of metal powders. The minimum ignition energy for these three types of nanograde metal powders was less than 1 mJ.  相似文献   
95.
Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1+/-0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them extremely insoluble even in 0.2 M HCl solution. The formation of solid solution of Ni with Al oxide was also possible, making it far less extractable than Cd, Zn, Cu, or Pb with the acid concentrations used.  相似文献   
96.
A simple, very efficient method is presented for routine analysis of herbicide Krovar I (active components bromacil and diuron) in water and soil samples. Water samples were extracted by liquid-liquid extraction with dichloromethane (DCM) as extraction solvent. For soil samples two different extraction techniques were compared: microwave-assisted solvent extraction and a shaking technique using a platform shaker. Extracts were analyzed by high performance liquid chromatography using a water:methanol gradient. Liquid chromatography was coupled with atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS) for quantification of bromacil and diuron. Optimization of the APCI-MS was done by using standards in the flow injection analysis mode (FIA). Method detection limit for liquid samples for bromacil is 0.04 microg L(-1) and for diuron 0.03 microg L(-1). Method detection limit for soil samples is 0.01 microg g(-1) dry weight for both compounds. Results of analysis of field samples of water and soil are also presented.  相似文献   
97.
The present study tested the extraction efficiency and quantification reproducibility of anhydrosugars in a series of NIST SRMs using two extraction protocols and isotopically-labeled (d7-levoglucosan) vs. chemically analogous (sedoheptulosan) surrogates. In both instances, levoglucosan concentrations in the different versions of the Washington, D.C. urban dust standard (SRM 1649, 1649a, 1649b, and RM 8785) were similar. The present test also showed that levoglucosan concentrations were not affected by long-term shelf storage of dry material. Variability of analyses were similar for both surrogates and averaged <5%. Surrogate recoveries were shown to average 103 ± 7% and 97 ± 7% for d7-levoglucosan and sedoheptulosan, respectively. The choice of solvent was shown to affect recoveries the most (but not variability). Levoglucosan concentrations were either seriously underestimated or overestimated with ethyl acetate extraction when d7-levoglucosan or sedoheptulosan was used as surrogate, respectively. These results point to the need to use some fraction of polar solvent (i.e. methanol) in the solvent mixture. Anhydrosugar concentrations in the urban dust from the Czech Republic (candidate SRMs 2786 and 2787) were characterized by 3- to 7-fold higher anhydrosugar concentrations than those observed in the Washington, D.C. urban dust. The internal anhydrosugar signatures (i.e. levoglucosan/mannosan ratio: L/M) confirm the predominance of biomass combustion sources in both SRM series with mixed inputs from hardwood and softwood combustion in the Washington, D.C. urban dust and a predominantly softwood source in the Prague urban dust. The uniform distribution of anhydrosugars, across the particle size distribution of both SRM series, confirms earlier studies that low temperature charred materials contribute significant inputs to atmospheric ultrafine particles with long atmospheric residence time and transport ranges.  相似文献   
98.
IntroductionBecauseofthehighoxidationpotentialofozone(O3) ,ozonationhasbeenregardedasapromisingmethodfordrinkingandwastewatertreatment.AwiderangeoforganicpollutantsinwatercanbedegradedbyO3,O3combinedwithH2 O2 orUVlight,whichareknownasAdvancedChemicalOxidati…  相似文献   
99.
100.
为揭示碳酸盐岩地质高背景区土壤重金属生态风险,选择广西典型的成土母岩为碳酸盐岩的土壤重金属高背景区,采集水稻籽实及对应根系土样品68套,在分析测试土壤、农作物籽实样品中砷(As)、镉(Cd)、铬(Cr)、铜(Cu)、汞(Hg)、镍(Ni)、铅(Pb)和锌(Zn)这8种重金属含量及土壤中重金属赋存形态的基础上,采用统计学、地累积指数、生物富集系数及相关性分析等方法开展土壤重金属生态风险研究.结果表明,研究区土壤中8种重金属平均含量明显高于全国和广西表层土壤的平均水平,其中Cd、As和Cr超过农用地土壤污染筛选值的比例分别达95. 6%、86. 8%和69. 1%,超过土壤污染管控值的比例分别为27. 9%、17. 6%和5. 9%.区内土壤中As、Cr、Cu、Ni、Pb和Zn主要以残渣态为主(残渣态占比> 80%),显示出较低的生物活性; Cd的生物活性相对较高,生物有效态组分占20. 99%,但仍明显低于全国其它非碳酸盐岩地区的土壤; Hg的潜在生物有效态组分占44. 04%,然而土壤中Hg全量较低,因此其潜在生物有效态的绝对含量较低.与土壤相比,研究区水稻籽实中重金属超标率明显...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号