首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   1篇
  国内免费   8篇
安全科学   10篇
废物处理   10篇
环保管理   11篇
综合类   19篇
基础理论   25篇
污染及防治   39篇
评价与监测   12篇
社会与环境   2篇
  2022年   3篇
  2021年   5篇
  2019年   4篇
  2018年   10篇
  2017年   7篇
  2016年   6篇
  2014年   4篇
  2013年   19篇
  2012年   6篇
  2011年   10篇
  2010年   6篇
  2009年   11篇
  2008年   12篇
  2007年   6篇
  2006年   3篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
排序方式: 共有128条查询结果,搜索用时 109 毫秒
91.
Perfluoroalkyl compounds (PFCs) are environmental toxicants that persistently accumulate in human blood. Their widespread detection and accumulation in the environment raise concerns about whether these chemicals might be developmental toxicants and teratogens in ecosystem. We evaluated and compared the toxicity of PFCs of containing various numbers of carbon atoms (C8–11 carbons) on vertebrate embryogenesis. We assessed the developmental toxicity and teratogenicity of various PFCs. The toxic effects on Xenopus embryos were evaluated using different methods. We measured teratogenic indices (TIs), and investigated the mechanisms underlying developmental toxicity and teratogenicity by measuring the expression of organ-specific biomarkers such as xPTB (liver), Nkx2.5 (heart), and Cyl18 (intestine). All PFCs that we tested were found to be developmental toxicants and teratogens. Their toxic effects were strengthened with increasing length of the fluorinated carbon chain. Furthermore, we produced evidence showing that perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFuDA) are more potent developmental toxicants and teratogens in an animal model compared to the other PFCs we evaluated [perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA)]. In particular, severe defects resulting from PFDA and PFuDA exposure were observed in the liver and heart, respectively, using whole mount in situ hybridization, real-time PCR, pathologic analysis of the heart, and dissection of the liver. Our studies suggest that most PFCs are developmental toxicants and teratogens, however, compounds that have higher numbers of carbons (i.e., PFDA and PFuDA) exert more potent effects.  相似文献   
92.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a potential human carcinogen, and its contamination of subsurface environments is a significant threat to public health. This study investigated abiotic and biological degradation of RDX in contaminated aquifer material. Anoxic batch systems were started with and without pre-aeration of aquifer material to distinguish initial biological RDX reduction from abiotic RDX reduction. Aerating the sediment eliminated chemical reductants in the native aquifer sediment, primarily Fe(II) sorbed to mineral surfaces. RDX (50 μM) was completely reduced and transformed to ring cleavage products when excess concentrations (2 mM) of acetate or lactate were provided as the electron donor for aerated sediment. RDX was reduced concurrently with Fe(III) when acetate was provided, while RDX, Fe(III), and sulfate were reduced simultaneously with lactate amendment. Betaproteobacteria were the dominant microorganisms associated with RDX and Fe(III)/sulfate reduction. In particular, Rhodoferax spp. increased from 21% to 35% and from 28% to 60% after biostimulation by acetate and lactate, respectively. Rarefaction analyses demonstrated that microbial diversity decreased in electron-donor-amended systems with active RDX degradation. Although significant amounts of Fe(III) and/or sulfate were reduced after biostimulation, solid-phase reactive minerals such as magnetite or ferrous sulfides were not observed, suggesting that RDX reduction in the aquifer sediment is due to Fe(II) adsorbed to solid surfaces as a result of Fe(III)-reducing microbial activity. These results suggest that both biotic and abiotic processes play an important role in RDX reduction under in situ conditions.  相似文献   
93.
Environmental Geochemistry and Health - Improper decisions concerning animal carcass disposal sites pose grave threats to environmental biosecurity. However, only a few studies have focused on the...  相似文献   
94.
Leachate, generated by the decomposition of animal carcasses, presents many environmental, sanitary, and food safety hazards. However, research on the characteristics of leachate is lacking. In this study, we performed biochemical profiling of leachate from two animal species (pig and cattle) in two soil types (sandy loam and sandy soil) using 1H-NMR-based profiling, followed by multivariate data analysis. The leachate was collected from a well-controlled artificial burial site over a 31-week period. Principal components analysis (PCA) of the NMR data showed similar patterns between species and soil types. Organic components, including organic acids and phenols, predominated, and their levels increased with time. The methylamine level in leachate from pig carcasses 18 weeks following burial was significantly higher than that from cattle carcasses; leachate from cattle carcasses in sandy soil 1 week after burial contained unique components (specifically ethanol, formate, alanine, N-methylation, and taurine), in contrast with those from sandy loam soil. This study suggests that a NMR-based profiling approach is useful to characterize the organic components in leachate from animal carcasses over time.  相似文献   
95.
Cho YC  Kwon OS  Sokol RC  Bethoney CM  Rhee GY 《Chemosphere》2001,43(8):1119-1126
Evidence of reductive dechlorination of polychlorinated biphenyls (PCBs) in sediments was investigated in Hudson River sediments dredged and encapsulated in 1978 at Moreau, NY. The effect of different moisture contents in dredged sediments on dechlorination and dechlorinating microorganisms was also determined using PCB-spiked sediments in which the moisture level was adjusted by simulating a dewatering process. The congener pattern of PCBs indicated that the dechlorination in the dredged sediments was far less advanced than that in the river sediments collected from the general area of the dredged site (Ft. Edward site). Dechlorination in encapsulated sediments at the Moreau site appeared to have stopped soon after dredging. When microorganisms eluted from the encapsulated sediments were inoculated in clean sediments spiked with Aroclor 1242, an extensive dechlorination was observed, indicating that the encapsulated sediments still harbored dechlorinating microorganisms. However, the same inoculum failed to further dechlorinate residual congeners in the dredged sediments. On the other hand, an inoculum obtained in 1990 from the dredged site in the Hudson River dechlorinated the residual congeners further. In simulated dredged sediments, the maximum level of dechlorination was lower at reduced moisture contents. The population size of dechlorinating microorganisms, as determined by the most probable number (MPN) technique, was also smaller at the lower moisture levels. There was a significant correlation between the maximum extent of dechlorination and the specific death rate of dechlorinating populations. These results indicate that the underlying mechanism of the moisture-dependent maximum dechlorination is the moisture-dependence of the death rate of dechlorinating microorganisms.  相似文献   
96.
Lee JK  Führ F  Kwon JW  Ahn KC 《Chemosphere》2002,49(2):173-181
In order to elucidate the long-term fate of the sulfonylurea herbicide cinosulfuron, the 14C-labelled chemical was applied to a clay loam soil, encased in two lysimeters, 22 days after rice (Oryza sativa L.) transplanting, and rice plants were grown for four consecutive years. Throughout the experimental period, leaching through soil profiles, absorption and translocation by rice plants, and distribution of 14C by downward movement in the soil layers were clarified. The total volume of leachates collected through the lysimeter soil over the four years amounted to 168 and 146 L in lysimeters I and II, respectively. The leachates contained 2.43% and 2.99% of the originally applied 14C-radioactivity, corresponding to an average concentration of 0.29 and 0.41 microg/L as the cinosulfuron equivalent in lysimeters I and II, respectively. The total 14C-radioactivity translocated to rice plants in the third and fourth year was 0.69% and 0.60% (lysimeter I), and 1.02% and 0.84% (lysimeter II) of the 14C applied, respectively. Larger amounts of cinosulfuron equivalents (0.54-0.75%) remained in the straw in the fourth year than in any other parts. The 14C-radioactivities distributed down to a depth of 70 cm after four years were 56.71-57.52% of the 14C applied, indicating the continuous downward movement and degradation of cinosulfuron in soil. The non-extractable residues were more than 88% of the soil radioactivity and some 45-48% of them was incorporated into the humin fraction. The 14C-radioactivity partitioned into the aqueous phase was nearly 30% of the extractable 14C, suggesting strongly that cinosulfuron was degraded into some polar products during the experimental period. It was found out in a supplemental investigation that flooding and constant higher temperature enhanced mineralization of [14C]cinosulfuron to 14CO2 in soil, indicating the possibility of chemical hydrolysis and microbial degradation of the compound in the flooded lysimeter soil.  相似文献   
97.
Kim SC  Jeon SH  Jung IR  Kim KH  Kwon MH  Kim JH  Yi JH  Kim SJ  You JC  Jung DH 《Chemosphere》2001,43(4-7):773-776
Removal efficiencies of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDDs/PCDFs) by air pollution control devices (APCDs) in the commercial-scale municipal solid waste (MSW) incinerators with a capacity of above 200 ton/day were evaluated. The removal efficiencies of PCDDs/PCDFs were up to 95% when the activated carbon (AC) was injected in front of electrostatic precipitator (EP). Spray dryer absorber/bag filter (SDA/BF) had high removal efficiency (99%)) of PCDDs/PCDFs when a mixture of lime and AC was sprayed into the SDA. When the AC was not added in scrubbing solution, the whole congeners of PCDDs/PCDFs were enriched in the wet scrubber (WS) with negative removal efficiencies of -25% to -5731%. Discharge of PCDDs/PCDFs was decreased with increasing the proportions of AC added in scrubbing solution. Selective catalytic reduction (SCR) system had the removal efficiencies of up to 93% during the test operation.  相似文献   
98.
Kwon JS  Yun ST  Kim SO  Mayer B  Hutcheon I 《Chemosphere》2005,60(10):1416-1426
We conducted kinetic and equilibrium sorption experiments on removal of Zn(II) from aqueous solutions by scoria (a vesicular pyroclastic rock with basaltic composition) from Jeju Island, Korea, in order to examine its potential use as an efficient sorbent. The batch-type kinetic sorption tests under variable conditions indicated that the percentage of Zn(II) removal by scoria increases with decreasing initial Zn(II) concentration, particle size, and sorbate/sorbent ratio. However, the sorption capacity decreases with the decrease of the initial Zn(II) concentration and sorbate/sorbent ratio. Equilibrium sorption tests show that Jeju scoria has a larger capacity and affinity for Zn(II) sorption than commercial powdered activated carbon (PAC); at initial Zn(II) concentrations of more than 10mM, the sorption capacity of Jeju scoria is about 1.5 times higher than that of PAC. The acquired sorption data are better fitted to the Langmuir isotherm than the Freundlich isotherm. Careful examination of ionic concentrations in sorption batches suggests that the sorption behavior is mainly controlled by cation exchange and typically displays characteristics of 'cation sorption'. The Zn(II) removal capacity decreases when solution pH decreases because of the competition with hydrogen ions for sorption sites, while the Zn(II) removal capacity increases under higher pH conditions, likely due to hydroxide precipitation. At an initial Zn(II) concentration of 5.0mM, the removal increases from 70% to 96% with the increase of initial pH from 3.0 to 7.0. We recommend Jeju scoria as an economic and efficient sorbent for Zn(II) in contaminated water.  相似文献   
99.
100.
We examined the impacts of changes in land cover and soil conditions on the flow regime of the upper Delaware River Basin using the Water Availability Tool for Environmental Resources. We simulated flows for two periods, c. 1600 and 1940, at three sites using the same temperature and precipitation conditions: the East Branch, West Branch, and mainstem Delaware River at Callicoon, New York. The 1600 period represented pristine forest and soils. The 1940 period included reduced forest cover, increased agriculture, and degraded soils with reduced soil macropore fractions. A model‐sensitivity test examined the impact of soil macropore and land cover change separately. We assessed changes in flow regimes between the 1600 and 1940 periods using a variety of flow statistics, including established ecological limits of hydrologic alteration (ELOHA) thresholds. Reduced forest soil macropore fraction significantly reduced summer and fall baseflows. The 1940 period had significantly lower Q50 flows (50% exceedance) than the 1600 period, as well as summer and fall Q90 and Q75–Q90 flows below the ELOHA thresholds. The one‐ to seven‐day minimum flows were also lower for the 1940 period, by 17% on the mainstem. 1940 flows were 6% more likely than the 1600 period to fall below the low‐flow threshold for federally endangered dwarf wedgemussel (Alasmidonta heterodon) habitat. In contrast, the 1940 period had higher flows than the 1600 period from late fall to early winter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号