首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   9篇
  国内免费   1篇
安全科学   2篇
废物处理   1篇
环保管理   44篇
综合类   8篇
基础理论   44篇
污染及防治   13篇
评价与监测   2篇
社会与环境   5篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   9篇
  2015年   13篇
  2014年   3篇
  2013年   4篇
  2012年   8篇
  2011年   11篇
  2010年   7篇
  2009年   7篇
  2008年   3篇
  2007年   5篇
  2006年   5篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有119条查询结果,搜索用时 0 毫秒
101.
ABSTRACT: The stability of the Neosho River channel downstream from John Redmond Dam, in southeast Kansas, was investigated using multiple‐date aerial photographs and stream‐gage information. Bankfull channel width was used as the primary indicator variable to assess pre‐ and post‐dam channel change. Five sin‐mile river reaches and four stream gages were used in the analysis. Results indicated that, aside from some localized channel widening, the overall channel change has been minor with little post‐dam change in bankfull channel width. The lack of a pronounced post‐dam channel change may be attributed to a substantial reduction in the magnitude of the post‐dam annual peak discharges in combination with the resistance to erosion of the bed and bank materials. Also, the channel may have been overwidened by a series of large floods that predated construction of the dam, including one with an estimated 500‐year recurrence interval.  相似文献   
102.
Abstract: Riparian buffer forests and vegetative filter strips are widely recommended for improving surface water quality, but grass‐shrub riparian buffer system (RBSs) are less well studied. The objective of this study was to assess the influence of buffer width and vegetation type on the key processes and overall reductions of total suspended solids (TSS), phosphorus (P), and nitrogen (N) from simulated runoff passed through established (7‐year old) RBSs. Nine 1‐m RBS plots, with three replicates of three vegetation types (all natural selection grasses, two‐segment buffer with native grasses and plum shrub, and two‐segment buffer with natural selection grasses and plum shrub) and widths ranging from 8.3 to 16.1 m, received simulated runoff having 4,433 mg/l TSS from on‐site soil, 1.6 mg/l total P, and 20 mg/l total N. Flow‐weighted samples were collected by using Runoff Sampling System (ROSS) units. The buffers were very efficient in removal of sediments, N, and P, with removal efficiencies strongly linked to infiltration. Mass and concentration reductions averaged 99.7% and 97.9% for TSS, 91.8% and 42.9% for total P, and 92.1% and 44.4% for total N. Infiltration alone could account for >75% of TSS removal, >90% of total P removal, and >90% of total N removal. Vegetation type induced significant differences in removal of TSS, total P, and total N. These results demonstrate that adequately designed and implemented grass‐shrub buffers with widths of only 8 m provide for water quality improvement, particularly if adequate infiltration is achieved.  相似文献   
103.
104.
The prey naivety hypothesis posits that prey are vulnerable to introduced predators because many generations in slow gradual coevolution are needed for appropriate avoidance responses to develop. It predicts that prey will be more responsive to native than introduced predators and less responsive to introduced predators that differ substantially from native predators and from those newly established. To test these predictions, we conducted a global meta-analysis of studies that measured the wariness responses of small mammals to the scent of sympatric mammalian mesopredators. We identified 26 studies that met our selection criteria. These studies comprised 134 experiments reporting on the responses of 36 small mammal species to the scent of six introduced mesopredators and 12 native mesopredators. For each introduced mesopredator, we measured their phylogenetic and functional distance to local native mesopredators and the number of years sympatric with their prey. We used predator and prey body mass as a measure of predation risk. Globally, small mammals were similarly wary of the scent of native and introduced mesopredators; phylogenetic and functional distance between introduced mesopredators and closest native mesopredators had no effect on wariness; and wariness was unrelated to the number of prey generations, or years, since first contact with introduced mesopredators. Small mammal wariness was associated with predator-prey body mass ratio, regardless of the nativity. The one thing animals do not seem to recognize is whether their predators are native.  相似文献   
105.
Consistent individual differences in behavior, commonly termed animal personality, are a widespread phenomenon across taxa that have important consequences for fitness, natural selection, and trophic interactions. Animal personality research may prove useful in several conservation contexts, but which contexts remains to be determined. We conducted a structured literature review of 654 studies identified by combining search terms for animal personality and various conservation subfields. We scored the relevance of personality and conservation issues for each study to identify which studies meaningfully integrated the 2 fields as opposed to surface-level connections or vague allusions. We found a taxonomic bias toward mammals (29% of all studies). Very few amphibian or reptile studies applied personality research to conservation issues (6% each). Climate change (21%), invasive species (15%), and captive breeding and reintroduction (13%) were the most abundant conservation subfields that occurred in our search, though a substantial proportion of these papers weakly integrated conservation and animal personality (climate change 54%, invasive species 51%, captive breeding and reintroduction 40%). Based on our results, we recommend that researchers strive for consistent and broadly applicable terminology when describing consistent behavioral differences to minimize confusion and improve the searchability of research. We identify several gaps in the literature that appear to be promising and fruitful avenues for future research, such as disease transmission as a function of sociability or exploration as a driver of space use in protected areas. Practitioners can begin informing future conservation efforts with knowledge gained from animal personality research.  相似文献   
106.
 Population genetic theory predicts that marine animal species with planktonic larvae will have less genetic structure than those with direct development. We compared the genetic structure of four species of littorinid snails – two with planktonic egg capsules that hatch as planktonic larvae and two with benthic egg masses that hatch as crawl-away juveniles. We used DNA sequencing and single stranded conformational polymorphism (SSCP) to assess sequence variation in a 480 bp fragment of the mitochondrial cytochrome b gene and then used an analysis of molecular variance (AMOVA) to estimate Φst for populations from the northeastern Pacific coast. One of the two direct-developing species, Littorina subrotundata, had a moderate amount of population structure (Φst=0.209) as expected but the other direct-developing species, L. sitkana, was nearly fixed for a single haplotype that made it impossible to precisely estimate Φst. One of the two planktonic-developing species, L. scutulata, did not show any significant population structure (Φst=0.004). In contrast to our expectations, the other planktonic-developing species, L. plena, showed some weak but statistically significant population structure (Φst=0.052). We discuss how differences in population genetic structure between species with the same type of development may reflect differences in their historical demography. Received: 22 December 1999 / Accepted: 24 July 2000  相似文献   
107.
We maintained a factorial nitrogen (N), phosphorus (P), and potassium (K) addition experiment for 11 years in a humid lowland forest growing on a relatively fertile soil in Panama to evaluate potential nutrient limitation of tree growth rates, fine-litter production, and fine-root biomass. We replicated the eight factorial treatments four times using 32 plots of 40 x 40 m each. The addition of K was associated with significant decreases in stand-level fine-root biomass and, in a companion study of seedlings, decreases in allocation to roots and increases in height growth rates. The addition of K and N together was associated with significant increases in growth rates of saplings and poles (1-10 cm in diameter at breast height) and a further marginally significant decrease in stand-level fine-root biomass. The addition of P was associated with a marginally significant (P = 0.058) increase in fine-litter production that was consistent across all litter fractions. Our experiment provides evidence that N, P, and K all limit forest plants growing on a relatively fertile soil in the lowland tropics, with the strongest evidence for limitation by K among seedlings, saplings, and poles.  相似文献   
108.
ABSTRACT: Wetlands that treat holding pond effluent can be designed to utilize the pond storage capacity to allow flexibility in system management. Management of a wetland as a sequencing batch reactor can simplify operation and control detention times, but little performance data on such systems are available. The objective of this study was to evaluate the batch reactor wetland concept by quantifying removal of chemical oxygen demand (COD), total suspended sediments (TSS), total nitrogen (TN), ammonium (NH4), nitrate (NO3), total phosphorus (TP), and orthophosphate (PO4) and by assessing the suitability of first‐order kinetics. Weekly samples were collected following batch loadings of wetland cells with high concentration or low concentration dairy holding pond wastewater during both fall and spring seasons. During three‐week batch periods without plants, overall mass removal averaged 54 percent for COD, 58 percent for TSS, 90 percent for TN, 72 percent for NH4, ‐54 percent for NO3, 38 percent for TP, and ‐8 percent for PO4. Best fit, first‐order kinetic rate constant (k) and background concentration (C*) for COD varied by season, with k = 0.024/d and C*= 0 mg/l in fall and k = 0.056/d and C*= 200 mg/l in spring. Ammonium exhibited a consistent C*= 0 mg/l but had variable rate constants of k = 0.121/d for low concentration treatments and k = 0.079/d for high concentration treatments. Using first‐order kinetics was also appropriate for TN, with k = 0.061/d and C*= 0 mg/l for all loadings and seasons, but was not consistently appropriate for TP or PO4. These results support the use of first‐order kinetics to describe treatment in batch reactor wastewater treatment wetlands without vegetation, perhaps during the establishment phase or in open water zones of vegetated wetlands. Further work is needed to assess the effects of vegetation.  相似文献   
109.
110.
This paper reviews the current status of using remote sensing and process-based modeling approaches to assess the contemporary and future circumpolar carbon balance of Arctic tundra, including the exchange of both carbon dioxide and methane with the atmosphere. Analyses based on remote sensing approaches that use a 20-year data record of satellite data indicate that tundra is greening in the Arctic, suggesting an increase in photosynthetic activity and net primary production. Modeling studies generally simulate a small net carbon sink for the distribution of Arctic tundra, a result that is within the uncertainty range of field-based estimates of net carbon exchange. Applications of process-based approaches for scenarios of future climate change generally indicate net carbon sequestration in Arctic tundra as enhanced vegetation production exceeds simulated increases in decomposition. However, methane emissions are likely to increase dramatically, in response to rising soil temperatures, over the next century. Key uncertainties in the response of Arctic ecosystems to climate change include uncertainties in future fire regimes and uncertainties relating to changes in the soil environment. These include the response of soil decomposition and respiration to warming and deepening of the soil active layer, uncertainties in precipitation and potential soil drying, and distribution of wetlands. While there are numerous uncertainties in the projections of process-based models, they generally indicate that Arctic tundra will be a small sink for carbon over the next century and that methane emissions will increase considerably, which implies that exchange of greenhouse gases between the atmosphere and Arctic tundra ecosystems is likely to contribute to climate warming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号