The stereoisomers of metolachlor and its two polar metabolites [ethane sulfonic acid (ESA) and oxanilic acid (OXA)] were separated using liquid chromatography-mass spectrometry (LC-MS) and capillary zone electrophoresis (CZE), respectively. The separation of metolachlor enantiomers was achieved using a LC-MS equipped with a chiral stationary phase based on cellulose tris(3,5-dimethylphenyl carbamate) and an atmospheric pressure chemical ionization source operated under positive ion mode. The enantiomers of ESA and OXA were separated using CZE with gamma-cyclodextrin (gamma-CD) as chiral selector. Various CZE conditions were investigated to achieve the best resolution of the ESA and OXA enantiomers. The optimum background CZE electrolyte was found to consist of borate buffer (pH=9) containing 20% methanol (v/v) and 2.5% gamma-CD (w/v). Maximum resolution of ESA and OXA enantiomers was achieved using a capillary temperature of 15 degrees C and applied voltage of 30 kV. The applicability of the LC-MS and CZE methods was demonstrated successfully on the enantiomeric analysis of metolachlor and its metabolites in samples from a soil and water degradation study that was set up to probe the stereoselectivity of metolachlor biodegradation. These techniques allow the enantiomeric ratios of the target analytes to be followed over time during the degradation process and thus will prove useful in determining the role of chirality in pesticide degradation and metabolite formation. 相似文献
Even though it is well established that soil C content is the primary determinant of the sorption affinity of soils for non-ionic compounds, it is also clear that organic carbon-normalized sorption coefficients (K(OC)) vary considerably between soils. Two factors that may contribute to K(OC) variability are variations in organic matter chemistry between soils and interactions between organic matter and soil minerals. Here, we quantify these effects for two non-ionic sorbates-diuron and phenanthrene. The effect of organic matter-mineral interactions were evaluated by comparing K(OC) for demineralized (HF-treated) soils, with K(OC) for the corresponding whole soils. For diuron and phenanthrene, average ratios of K(OC) of the HF-treated soils to K(OC) of the whole soils were 2.5 and 2.3, respectively, indicating a substantial depression of K(OC) due to the presence of minerals in the whole soils. The effect of organic matter chemistry was determined by correlating K(OC) against distributions of C types determined using solid-state (13)C NMR spectroscopy. For diuron, K(OC) was positively correlated with aryl C and negatively correlated with O-alkyl C, for both whole and HF-treated soils, whereas for phenanthrene, these correlations were only present for the HF-treated soils. We suggest that the lack of a clear effect of organic matter chemistry on whole soil K(OC) for phenanthrene is due to an over-riding influence of organic matter-mineral interactions in this case. This hypothesis is supported by a correlation between the increase in K(OC) on HF-treatment and the soil clay content for phenanthrene, but not for diuron. 相似文献
The desorption kinetics of in situ chlorobenzenes (dichlorobenzenes, pentachlorobenzene and hexachlorobenzene) and 2,4,4′-trichlorobiphenyl (PCB-28) were measured with a gas-purge technique for river Rhine suspended matter sampled in Lobith, The Netherlands. This suspended matter is the main source of sediment accumulation in lake Ketelmeer. In lake Ketelmeer sediment earlier observations showed that slow and very slow fractions dominate the desorption profile.
For the river Rhine suspended matter, only for PCB-28 a fast desorbing fraction of around 1.6% could be detected. The observed rate constants were on the average 0.2 h−1 for fast desorption, 0.004 h−1 for slow desorption, and 0.00022 h−1 for very slow desorption. These values are in agreement with previous findings for the sediment from lake Ketelmeer and with available literature data on fast, slow, and very slow desorption kinetics.
The results from this study show the similarity of desorption profiles between river Rhine suspended matter, and the top layer sediment from lake Ketelmeer. This indicates that slow and very slow fractions are already present in material forming the top layer of lake Ketelmeer, and were not formed after deposition of this material in the lake. The absence of detectable fast fractions for most compounds could be caused by the absence of recent pollution of the suspended matter. But, the observations may also be explained by a rapid disappearance of compounds from the fast fraction due to a combination of a high affinity of very slow sites for these compounds, and their relatively high volatility. 相似文献
A risk assessment of chemical constituents in rivers that receive untreated wastewater should take into account the adverse effects of increased biological oxygen demand (BOD), ammonia and reduced dissolved oxygen (DO). This concept was tested via a field study in the Balatuin River, The Philippines, where the influence of physical and chemical factors, including the consumer product chemical linear alkylbenezene sulfonate (LAS), to aquatic communities (algae, invertebrates, fish) was determined. Periphytic algae were found to be insensitive to high BOD (>10 mg/l) and ammonia (>0.01 mg unionized NH(3)/l), concentrations from organically enriched untreated wastewater discharges. However, taxa richness and abundance of macroinvertebrates were influenced greatly by the discharges. Where BOD and ammonia concentrations were elevated, the dominant taxa were oligochaete worms and chironominds. Fish and crustaceans (freshwater crabs and prawns) were found only in sites with the least BOD concentrations (furthest upstream and downstream). The maximum concentration of LAS (0.122 mg/l) was less than that expected to affect 5% of taxa (0.245 mg/l), whereas exceedences of DO and ammonia criteria were observed in several sites. The lack of recovery observed was attributed to influences of low DO, high ammonia and poor colonization from upstream and downstream reaches due to organically-enriched discharges 相似文献
A chronic dietary risk assessment for pesticide residues was conducted for four age groups of the Argentinian population following the procedure recommended by the WHO. The National Theoretical Maximum Daily Intake (NTMDI) for 308 pesticides was calculated for the first time, using the Maximum Residue Limits (MRLs) from several Argentinean regulations and food consumption data from a comprehensive National Nutrition and Health Survey. The risk was estimated by comparing the TMDI with the Acceptable Daily Intakes (ADI) identified by various sources. Furthermore, for each of the compounds with a TMDI >65% of the ADI, a probabilistic analysis was conducted to quantify the probability of exceeding the ADI. In this study 27, 22, 10, and 6 active ingredients (a.i.) were estimated to exceed the 100% of the ADI for the different population groups: 6–23 month-old children, 2–5 year-old children, pregnant women, and 10–49 year-old women, respectively. Some of these ADI-exceeding compounds (carbofuran, diazinon, dichlorvos, dimethoate, oxydemeton-methyl and methyl bromide) were found in all four of these groups. Milk, apples, potatoes, and tomatoes were the foods that contributed most to the intake of these pesticides. The study is of primary importance for the improvement of risk assessment, regulations, and monitoring activities. 相似文献
Insect outbreaks can have important consequences for tundra ecosystems. In this study, we synthesise available information on outbreaks of larvae of the noctuid moth Eurois occulta in Greenland. Based on an extensive dataset from a monitoring programme in Kobbefjord, West Greenland, we demonstrate effects of a larval outbreak in 2011 on vegetation productivity and CO2 exchange. We estimate a decreased carbon (C) sink strength in the order of 118–143 g C m?2, corresponding to 1210–1470 tonnes C at the Kobbefjord catchment scale. The decreased C sink was, however, counteracted the following years by increased primary production, probably facilitated by the larval outbreak increasing nutrient turnover rates. Furthermore, we demonstrate for the first time in tundra ecosystems, the potential for using remote sensing to detect and map insect outbreak events. 相似文献
Environmental Science and Pollution Research - This work describes the production/characterization of low molar mass chitosan nanoparticles derived from waste shrimp shells (SSC), as well as from a... 相似文献
For computational reasons, evaluations of NO(x) emission controls usually concentrate on either episodic or annual impacts on pollution or deposition levels. However, previously published model results indicate that the consequences of NO(x) controls can be quite different on these different time scales. In this paper we analyse the impact of a consistent set of NO(x) control scenarios on both the episodic and annual time-scales. Using similar models, we compute levels of episode peak O(3) and NO(2) and annual NO(y)-N and total N deposition at three locations in Europe due to six emission scenarios derived from OECD estimates. An NO(x) control scenario which reduces European emissions by 63%, only results in total annual N deposition reductions of 19, 36 and 26% at the three locations examined because of the influence of ammonia-nitrogen deposition. The same scenario results in either increases or decreases in episode peak O(3) due to the influence of hydrocarbons. Emission reduction strategies should take into account not only NO(x) emissions, but emissions of other pollutants, such as hydrocarbons and ammonia. 相似文献