首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   395篇
  免费   13篇
  国内免费   83篇
安全科学   27篇
废物处理   25篇
环保管理   38篇
综合类   150篇
基础理论   74篇
环境理论   1篇
污染及防治   128篇
评价与监测   27篇
社会与环境   10篇
灾害及防治   11篇
  2023年   7篇
  2022年   23篇
  2021年   14篇
  2020年   11篇
  2019年   18篇
  2018年   20篇
  2017年   14篇
  2016年   17篇
  2015年   17篇
  2014年   31篇
  2013年   38篇
  2012年   33篇
  2011年   31篇
  2010年   21篇
  2009年   27篇
  2008年   26篇
  2007年   18篇
  2006年   18篇
  2005年   15篇
  2004年   16篇
  2003年   12篇
  2002年   11篇
  2001年   4篇
  2000年   4篇
  1999年   8篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有491条查询结果,搜索用时 421 毫秒
161.
This paper proposes an ecological view to investigate how disparities in mobile technology use reflect vulnerabilities in communities vis‐à‐vis disaster preparedness. Data (n=1,603) were collected through a multi‐country survey conducted equally in rural and urban areas of Indonesia, Myanmar, Philippines, and Vietnam, where mobile technology has become a dominant and ubiquitous communication and information medium. The findings show that smartphone users' routinised use of mobile technology and their risk perception are significantly associated with disaster preparedness behaviour indirectly through disaster‐related information sharing. In addition to disaster‐specific social support, smartphone users' disaster‐related information repertoires are another strong influencing factor. In contrast, non‐smartphone users are likely to rely solely on receipt of disaster‐specific social support as the motivator of disaster preparedness. The results also reveal demographic and rural–urban differences in disaster information behaviour and preparedness. Given the increasing shift from basic mobile phone models to smartphones, the theoretical and policy‐oriented implications of digital disparities and vulnerability are discussed.  相似文献   
162.
张帆  宋阳  胡春  吕来 《环境科学》2021,42(5):2360-2369
多相催化臭氧化技术因能有效去除水中有机污染物而受到广泛关注.然而,基于单一位点氧化还原的金属氧化物催化臭氧化过程存在速率限制步骤,使活性受到抑制,极大地限制了多相催化臭氧化技术的实际应用.为解决这一瓶颈,以过渡金属物种Fe和Ti对金属氧化物γ-Al2O3基底进行晶格掺杂制备出新型双反应中心催化剂FT-A-1 DRCs.通过XRD、TEM和XPS等技术对其形貌结构和化学组成进行了表征分析,证明Fe和Ti对于Al的晶格取代,形成表面贫富电子微区(富电子Fe微中心和缺电子Ti微中心).FT-A-1 DRCs被用于催化臭氧化过程,对布洛芬等一系列难降解有机污染物的去除表现出优异的活性和稳定性.利用EPR和电化学技术揭示了界面反应机制.发现在催化臭氧化过程中,O3/H2O在富电子微中心被定向还原产生·OH,而污染物可在缺电子微中心作为电子供体而被氧化,为反应体系持续提供电子.这一反应过程利用污染物自身的能量实现了污染物的双途径降解(·OH攻击和直接电子供体),突破了金属氧化物催化臭氧化过程存在速率限制步骤.  相似文献   
163.
The main impact produced by landfills is represented by the release of leachate emissions. Waste washing treatment has been investigated to evaluate its efficiency in reducing the waste leaching fraction prior to landfilling. The results of laboratory-scale washing tests applied to several significant residues from integrated management of solid waste are presented in this study, specifically: non-recyclable plastics from source separation, mechanical-biological treated municipal solid waste and a special waste, automotive shredded residues. Results obtained demonstrate that washing treatment contributes towards combating the environmental impacts of raw wastes. Accordingly, a leachate production model was applied, leading to the consideration that the concentrations of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN), parameters of fundamental importance in the characterization of landfill leachate, from a landfill containing washed wastes, are comparable to those that would only be reached between 90 and 220years later in the presence of raw wastes. The findings obtained demonstrated that washing of waste may represent an effective means of reducing the leachable fraction resulting in a consequent decrease in landfill emissions. Further studies on pilot scale are needed to assess the potential for full-scale application of this treatment.  相似文献   
164.

The current energy crisis, depletion of fossil fuels, and global climate change have made it imperative to find alternative sources of energy that are both economically sustainable and environmentally friendly. Here we review various pathways for converting biomass into bioenergy and biochar and their applications in producing electricity, biodiesel, and biohydrogen. Biomass can be converted into biofuels using different methods, including biochemical and thermochemical conversion methods. Determining which approach is best relies on the type of biomass involved, the desired final product, and whether or not it is economically sustainable. Biochemical conversion methods are currently the most widely used for producing biofuels from biomass, accounting for approximately 80% of all biofuels produced worldwide. Ethanol and biodiesel are the most prevalent biofuels produced via biochemical conversion processes. Thermochemical conversion is less used than biochemical conversion, accounting for approximately 20% of biofuels produced worldwide. Bio-oil and syngas, commonly manufactured from wood chips, agricultural waste, and municipal solid waste, are the major biofuels produced by thermochemical conversion. Biofuels produced from biomass have the potential to displace up to 27% of the world's transportation fuel by 2050, which could result in a reduction in greenhouse gas emissions by up to 3.7 billion metric tons per year. Biochar from biomass can yield high biodiesel, ranging from 32.8% to 97.75%, and can also serve as an anode, cathode, and catalyst in microbial fuel cells with a maximum power density of 4346 mW/m2. Biochar also plays a role in catalytic methane decomposition and dry methane reforming, with hydrogen conversion rates ranging from 13.4% to 95.7%. Biochar can also increase hydrogen yield by up to 220.3%.

  相似文献   
165.
● EE2 photodegradation behavior in the presence of four WWTPs’ DOM was explored. ● The 3DOM* played a major role in the EE2 photodegradation mediated by WWTPs’ DOM. ● The A2/O process DOM contained more aromatic and oxygen-containing substances. ● Possible photosensitivity sources of DOM in the A2/O process were proposed. Dissolved organic matter (DOM) from each treatment process of wastewater treatment plants (WWTPs) contains abundant photosensitive substances, which could significantly affect the photodegradation of 17α-ethinylestradiol (EE2). Nevertheless, information about EE2 photodegradation behavior mediated by DOM from diverse WWTPs and the photosensitivity sources of such DOM are inadequate. This study explored the photodegradation behavior of EE2 mediated by four typical WWTPs’ DOM solutions and investigated the photosensitivity sources of DOM in the anaerobic-anoxic-oxic (A2/O) process. The parallel factor analysis identified three varying fluorescing components of these DOM, tryptophan-like substances or protein-like substances, microbial humus-like substances, and humic-like components. The photodegradation rate constants of EE2 were positively associated with the humification degree of DOM (P < 0.05). The triplet state substances were responsible for the degradation of EE2. DOM extracted from the A2/O process, especially in the secondary treatment process had the fastest EE2 photodegradation rate compared to that of the other three processes. Four types of components (water-soluble organic matter (WSOM), extracellular polymeric substance, humic acid, and fulvic acid) were separated from the A2/O process DOM. WSOM had the highest promotion effect on EE2 photodegradation. Fulvic acid-like components and humic acid-like organic compounds in WSOM were speculated to be important photosensitivity substances that can generate triplet state substances. This research explored the physicochemical properties and photosensitive sources of DOM in WWTPs, and explained the fate of estrogens photodegradation in natural waters.  相似文献   
166.
本文结合鞋靴保暖功效学原理,重点研究了支撑式鞋垫和橡胶双密度胶底结构。通过实验确定了鞋底发泡层视密度的范围在0.75g/cm3~0.85g/cm3之间,发泡橡胶的拉伸和导热性能达到平衡,兼顾了保暖鞋的耐穿和防寒隔热性能。  相似文献   
167.
赖文光 《环境技术》2006,24(4):8-13
不同的温度参数数据处理方法有不同的计算结果,本文针对检测与评定气候环境试验设备的技术性能中存在的问题,分析了三个标准(GB 11158-89、GB/T 5170.1-1995、JTM K 05-1991)的温度参数数据处理方法,比对了二组实际检测数据的计算结果,说明"绝对极值法"科学准确、简捷实用.  相似文献   
168.
• Dual-reaction-center (DRC) system breaks through bottleneck of Fenton reaction. • Utilization of intrinsic electrons of pollutants is realized in DRC system. • DRC catalytic process well continues Fenton’s story. Triggered by global water quality safety issues, the research on wastewater treatment and water purification technology has been greatly developed in recent years. The Fenton technology is particularly powerful due to the rapid attack on pollutants by the generated hydroxyl radicals (•OH). However, both heterogeneous and homogeneous Fenton/Fenton-like technologies follow the classical reaction mechanism, which depends on the oxidation and reduction of the transition metal ions at single sites. So even after a century of development, this reaction still suffers from its inherent bottlenecks in practical application. In recent years, our group has been focusing on studying a novel heterogeneous Fenton catalytic process, and we developed the dual-reaction-center (DRC) system for the first time. In the DRC system, H2O2 and O2 can be efficiently reduced to reactive oxygen species (ROS) in electron-rich centers, while pollutants are captured and oxidized by the electron-deficient centers. The obtained electrons from pollutants are diverted to the electron-rich centers through bonding bridges. This process breaks through the classic Fenton mechanism, and improves the performance and efficiency of pollutant removal in a wide pH range. Here, we provide a brief overview of Fenton’s story and focus on combing the discovery and development of the DRC technology and mechanism in recent years. The construction of the DRC and its performance in the pollutant degradation and interfacial reaction process are described in detail. We look forward to bringing a new perspective to continue Fenton’s story through research and development of DRC technology.  相似文献   
169.
Environmental Science and Pollution Research - For the purpose of enhancing the removal rate of nitrogen (N) and organic matters, intermittent aeration and carbon source were used in...  相似文献   
170.
Hg species (total mercury, methylmercury, reactive mercury) in precipitation were investigated in the vicinity of the Lehigh Hanson Permanente Cement Plant in the San Francisco Bay Area, CA., USA. Precipitation was collected weekly between November 29, 2007 and March 20, 2008, which included the period in February and March 2008 when cement production was minimized during annual plant maintenance. When the cement plant was operational, the volume weighted mean (VWM) and wet depositional flux for total Hg (HgT) were 6.7 and 5.8 times higher, respectively, compared to a control site located 3.5 km east of the cement plant. In February and March, when cement plant operations were minimized, levels were approximately equal at both sites (the ratio for both parameters was 1.1). Due to the close proximity between the two sites, meteorological conditions (e.g., precipitation levels, wind direction) were similar, and therefore higher VWM HgT levels and HgT deposition likely reflected increased Hg emissions from the cement plant. Methylmercury (MeHg) and reactive Hg (Hg(II)) were also measured; compared to the control site, the VWM for MeHg was lower at the cement plant (the ratio = 0.75) and the VWM for Hg(II) was slightly higher (ratio = 1.2), which indicated the cement plant was not likely a significant source of these Hg species to the watershed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号