首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2238篇
  免费   17篇
  国内免费   91篇
安全科学   105篇
废物处理   210篇
环保管理   280篇
综合类   293篇
基础理论   392篇
环境理论   1篇
污染及防治   783篇
评价与监测   193篇
社会与环境   74篇
灾害及防治   15篇
  2023年   11篇
  2022年   33篇
  2021年   36篇
  2020年   12篇
  2019年   41篇
  2018年   70篇
  2017年   58篇
  2016年   78篇
  2015年   54篇
  2014年   67篇
  2013年   178篇
  2012年   123篇
  2011年   143篇
  2010年   96篇
  2009年   129篇
  2008年   134篇
  2007年   144篇
  2006年   128篇
  2005年   114篇
  2004年   105篇
  2003年   97篇
  2002年   88篇
  2001年   62篇
  2000年   35篇
  1999年   24篇
  1998年   20篇
  1997年   23篇
  1996年   16篇
  1995年   18篇
  1994年   18篇
  1993年   19篇
  1992年   10篇
  1991年   19篇
  1990年   10篇
  1989年   9篇
  1988年   10篇
  1986年   7篇
  1985年   8篇
  1984年   7篇
  1983年   7篇
  1982年   10篇
  1981年   10篇
  1980年   9篇
  1978年   6篇
  1976年   5篇
  1974年   4篇
  1973年   5篇
  1972年   6篇
  1971年   6篇
  1969年   5篇
排序方式: 共有2346条查询结果,搜索用时 15 毫秒
921.
Calcium carbonate is a secondary mineral precipitate influencing zero valent iron (ZVI) barrier reactivity and hydraulic performance. We conducted column experiments to investigate electrical signatures resulting from concurrent CaCO3 and iron oxides precipitation under simulated field geochemical conditions. We identified CaCO3 as a major mineral phase throughout the columns, with magnetite present primarily close to the influent based on XRD analysis. Electrical measurements revealed decreases in conductivity and polarization of both columns, suggesting that electrically insulating CaCO3 dominates the electrical response despite the presence of electrically conductive iron oxides. SEM/EDX imaging suggests that the electrical signal reflects the geometrical arrangement of the mineral phases. CaCO3 forms insulating films on ZVI/magnetite surfaces, restricting charge transfer between the pore electrolyte and ZVI particles, as well as across interconnected ZVI particles. As surface reactivity also depends on the ability of the surface to engage in redox reactions via charge transfer, electrical measurements may provide a minimally invasive technology for monitoring reactivity loss due to CaCO3 precipitation. Comparison between laboratory and field data shows consistent changes in electrical signatures due to iron corrosion and secondary mineral precipitation.  相似文献   
922.
Lab scale mulch biofilm barriers were constructed and tested to evaluate their performance for preventing the migration of aqueous and surfactant solubilized PAHs. The spatial distribution of viable PAH degrader populations and resultant biofilm formation were also monitored to evaluate the performance of the biobarrier and the prolonged surfactant effect on the PAH degrading microorganism consortia in the biobarrier. Sorption and biodegradation of PAHs resulted in stable operation of the system for dissolved phenanthrene and pyrene during 150 days of experimentation. The nonionic surfactant could increase the solubility of phenanthrene and pyrene significantly. However, the biobarrier itself couldn't totally prevent the migration of micellar solubilized phenanthrene and pyrene. The presence of surfactant and the resultant highly increased phenanthrene or pyrene concentration didn't appear to cause toxic effects on the attached biofilm in the biobarrier. However, the presence of surfactant did change the structural composition of the biofilm.  相似文献   
923.
韩国农村排水系统的建设和管理   总被引:1,自引:0,他引:1  
农村排水系统是农村建设发展的重要基础设施.结合韩国农村排水系统建设和管理.介绍了韩国相关的政策措施的制定、排水系统的特点、污水处理工艺和设施管理等,同时对韩国农村排水系统目前存在的问题进行了分析.  相似文献   
924.
Aviation emissions contribute to the radiative forcing (RF) of climate. Of importance are emissions of carbon dioxide (CO2), nitrogen oxides (NOx), aerosols and their precursors (soot and sulphate), and increased cloudiness in the form of persistent linear contrails and induced-cirrus cloudiness. The recent Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) quantified aviation's RF contribution for 2005 based upon 2000 operations data. Aviation has grown strongly over the past years, despite world-changing events in the early 2000s; the average annual passenger traffic growth rate was 5.3% yr?1 between 2000 and 2007, resulting in an increase of passenger traffic of 38%. Presented here are updated values of aviation RF for 2005 based upon new operations data that show an increase in traffic of 22.5%, fuel use of 8.4% and total aviation RF of 14% (excluding induced-cirrus enhancement) over the period 2000–2005. The lack of physical process models and adequate observational data for aviation-induced cirrus effects limit confidence in quantifying their RF contribution. Total aviation RF (excluding induced cirrus) in 2005 was ~55 mW m?2 (23–87 mW m?2, 90% likelihood range), which was 3.5% (range 1.3–10%, 90% likelihood range) of total anthropogenic forcing. Including estimates for aviation-induced cirrus RF increases the total aviation RF in 2005–78 mW m?2 (38–139 mW m?2, 90% likelihood range), which represents 4.9% of total anthropogenic forcing (2–14%, 90% likelihood range). Future scenarios of aviation emissions for 2050 that are consistent with IPCC SRES A1 and B2 scenario assumptions have been presented that show an increase of fuel usage by factors of 2.7–3.9 over 2000. Simplified calculations of total aviation RF in 2050 indicate increases by factors of 3.0–4.0 over the 2000 value, representing 4–4.7% of total RF (excluding induced cirrus). An examination of a range of future technological options shows that substantive reductions in aviation fuel usage are possible only with the introduction of radical technologies. Incorporation of aviation into an emissions trading system offers the potential for overall (i.e., beyond the aviation sector) CO2 emissions reductions. Proposals exist for introduction of such a system at a European level, but no agreement has been reached at a global level.  相似文献   
925.
In this study, we investigated the characteristics of heavy metal contamination in road dusts collected from industrial areas in Korea. A total of 12 sampling sites, including nine sites in three different industrial complexes (ICs), two IC vicinity areas and one background area, were selected for this study. The collected road dusts were divided into four categories. The heavy metals (Cd, Cu, Pb, Zn, and Ni) were extracted from the road dust by an aqua regia extraction method and analyzed by atomic absorption spectrometry. The highest concentrations of Cd, Cu, and Pb were identified in road dusts from areas near the non-ferrous metal IC, followed by those from the petrochemical IC. The petrochemical IC and the mechanical/shipbuilding IC showed the highest concentrations of Ni and Zn in their road dusts, respectively. The concentration of heavy metals in the road dusts collected from the IC vicinity areas, even those located in a rural environment, were very high. The concentration of heavy metals increased with decreasing particle size of the road dusts. This study also analyzed the mobility of the heavy metals in the road dusts using partial sequential extraction with the Tessier procedure. The order of mobility identified, based on exchangeable and carbonate fractions of the heavy metals, was Cd > Zn > Pb > Cu > Ni.  相似文献   
926.
A previous study on PM2.5 carbonaceous aerosols measured with the thermal optical reflectance (TOR) method in fourteen Chinese cities is extended by subdividing total EC into char-EC and soot-EC. Average char-EC concentrations show great differences between the fourteen cities and between winter and summer periods, with concentrations of 8.67 and 2.41 μg m?3 in winter and summer, respectively. Meanwhile spatial and seasonal soot-EC variations are small, with average concentrations of 1.26 and 1.21 μg m?3 in winter and summer, respectively. Spatial and temporal distributions of char-EC, similar to EC, are mainly influenced by local fuel consumption, as well as the East Asian monsoon and some meteorological factors such as the mixing height and wet precipitation. The small spatial and seasonal variation of soot-EC is consistent with its regional-to-global dispersion, which may suggest that soot carbon is not local carbon, but regional carbon. Char-EC/soot-EC ratios show summer minimum and winter maximum in all cities, which is in good agreement with the difference in source contributions between the two periods. As OC/EC ratio is affected by the formation of the secondary organic aerosol (SOA), char-EC/soot-EC ratio is a more effective indicator for source identification of carbonaceous aerosol than previously used OC/EC ratio.  相似文献   
927.
Real-world vehicle emission factors for seventeen gas and particulate polycyclic aromatic hydrocarbons (PAHs) were quantified in the Shing Mun Tunnel, Hong Kong during summer and winter 2003. Naphthalene, acenaphthylene, and acenaphthene were the most abundant gas PAHs while fluoranthene and pyrene were the most abundant in the particle phase. Most (98%) of the gas PAHs consisted of two- and three-aromatic rings whereas most of the particle-phase PAHs were in four- (~60%) and five-ring (~17%) for fresh exhaust emissions. Average emission factors for the gas- and particle PAHs were 950–2564 μg veh?1 km?1 and 22–354 μg veh?1 km?1, respectively. Good correlations were found between diesel markers (fluoranthene and pyrene; 0.85) and gasoline markers (benzo[ghi]perylene and indeno[1,2,3-cd]pyrene; 0.96). Higher PAH emission factors were associated with a higher fraction of diesel-fueled vehicles (DV) passing through the tunnel. Separate emission factors were determined from diesel and non-diesel exhaust by the regression intercept method. The average PAH emission factor (i.e., sum of gas and particle phases) from DV (3085 ± 1058 μg veh?1 km?1) was ~5 times higher than that from non-diesel-fueled vehicles (NDV, 566 ± 428 μg veh?1 km?1). Ratios of DV to NDV emission factors were high for diesel markers (>24); and low for gasoline markers (<0.4).  相似文献   
928.
Three CO instruments, i.e., vacuum ultraviolet resonance fluorescence (VUV-RF), gas chromatography/reduction gas detection (GC/RGD), and non-dispersive infrared (NDIR) spectrometry, were inter-compared at a background site, i.e., Lulin Atmospheric Baseline Station (LABS) in central Taiwan. For a period of 18 days of continuous measurements, highly coherent results were observed between the three instruments. Calibration of the GC/RGD and VUV-RF was based on the same batch of CO standards, producing results that agreed within 4%. Nevertheless, NDIR displayed a significant bias with a large offset compared to the other two instruments (about ?63.1 ppb), due mainly to its over-simplified calibration procedure. The NDIR bias was then removed by aligning the NDIR data to those of GC/RGD in a process termed “post-run correction”. Through this practice, the NDIR was linked to the same calibration scale as that of GC/RGD. As a result, by simultaneously exploiting both GC/RGD and NDIR to measure background CO, both time-resolution and accuracy can be secured.  相似文献   
929.
Optical and chemical aerosol measurements were obtained from 2 to 31 July 2006 at an urban site in the metropolitan area of Guangzhou (China) as part of the Program of Regional Integrated Experiment of Air Quality over Pearl River Delta (PRIDE-PRD2006) to investigate aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing. During the PRIDE-PRD2006 campaign, the average contributions of ammonium sulfate, organic mass by carbon (OMC), elemental carbon (EC), and sea salt (SS) to total PM2.5 mass were measured to be 36.5%, 5.7%, 27.1%, 7.8%, and 3.7%, respectively. Compared with the clean marine period, (NH4)2SO4, NH4NO3, and OMC were all greatly enhanced (by up to 430%) during local haze periods via the accumulation of a secondary aerosol component. The OMC dominance increased when high levels of biomass burning influenced the measurement site while (NH4)2SO4 and OMC did when both biomass burning and industrial emissions influenced it. The effect of aerosol water content on the total light-extinction coefficient was estimated to be 34.2%, of which 25.8% was due to aerosol water in (NH4)2SO4, 5.1% that in NH4NO3, and 3.3% that in SS. The average mass-scattering efficiency (MSE) of PM10 particles was determined to be 2.2 ± 0.6 and 4.6 ± 1.7 m2 g−1 under dry (RH < 40%) and ambient conditions, respectively. The average single-scattering albedo (SSA) was 0.80 ± 0.08 and 0.90 ± 0.04 under dry and ambient conditions, respectively. Not only are the extinction and scattering coefficients greatly enhanced by aerosol water content, but MSE and SSA are also highly sensitive. It can be concluded that sulfate and carbonaceous aerosol, as well as aerosol water content, play important roles in the processes that determine visibility impairment and radiative forcing in the ambient atmosphere of the Guangzhou urban area.  相似文献   
930.
Planners advocate best management practices (BMPs) to reduce loss of sediment and nutrients in agricultural areas. However, the scientific community lacks tools that use readily available data to investigate the relationships between BMPs and their spatial locations and water quality. In rural, humid regions where runoff is associated with saturation-excess processes from variable source areas (VSAs), BMPs are potentially most effective when they are located in areas that produce the majority of the runoff. Thus, two critical elements necessary to predict the water quality impact of BMPs include correct identification of VSAs and accurate predictions of nutrient reduction due to particular BMPs. The objective of this research was to determine the effectiveness of BMPs using the Variable Source Loading Function (VSLF) model, which captures the spatial and temporal evolutions of VSAs in the landscape. Data from a long-term monitoring campaign on a 164-ha farm in the New York City source watersheds in the Catskills Mountains of New York state were used to evaluate the effectiveness of a range of BMPs. The data spanned an 11-year period over which a suite of BMPs, including a nutrient management plan, riparian buffers, filter strips and fencing, was installed to reduce phosphorus (P) loading. Despite its simplicity, VSLF predicted the spatial distribution of runoff producing areas well. Dissolved P reductions were simulated well by using calibrated reduction factors for various BMPs in the VSLF model. Total P losses decreased only after cattle crossings were installed in the creek. The results demonstrated that BMPs, when sited with respect to VSAs, reduce P loss from agricultural watersheds, providing useful information for targeted water quality management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号