首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5409篇
  免费   47篇
  国内免费   257篇
安全科学   198篇
废物处理   396篇
环保管理   555篇
综合类   856篇
基础理论   1148篇
环境理论   3篇
污染及防治   1868篇
评价与监测   412篇
社会与环境   250篇
灾害及防治   27篇
  2023年   28篇
  2022年   102篇
  2021年   73篇
  2020年   35篇
  2019年   76篇
  2018年   186篇
  2017年   108篇
  2016年   153篇
  2015年   136篇
  2014年   155篇
  2013年   437篇
  2012年   205篇
  2011年   294篇
  2010年   225篇
  2009年   272篇
  2008年   289篇
  2007年   321篇
  2006年   262篇
  2005年   225篇
  2004年   237篇
  2003年   228篇
  2002年   192篇
  2001年   284篇
  2000年   173篇
  1999年   93篇
  1998年   60篇
  1997年   67篇
  1996年   48篇
  1995年   57篇
  1994年   60篇
  1993年   59篇
  1992年   40篇
  1991年   50篇
  1990年   36篇
  1989年   41篇
  1988年   30篇
  1987年   19篇
  1986年   25篇
  1985年   23篇
  1984年   25篇
  1983年   29篇
  1982年   32篇
  1981年   23篇
  1980年   19篇
  1979年   17篇
  1978年   17篇
  1975年   14篇
  1973年   14篇
  1972年   16篇
  1969年   12篇
排序方式: 共有5713条查询结果,搜索用时 62 毫秒
841.
Antioxidant enzymes in liver and small intestine were investigated using control and streptozotocin diabetic rats fed diets with 5% olive, sunflower or fish oil for five weeks. In liver, Glutathione Peroxidase and Superoxide Dismutase decreased and in intestine Glutathione-S-transferase (GST) increased by diabetes. In isolated jejunum and ileum, this increase in GST activity was due to an increase in GST-alpha and -mu isoenzymes in jejunum and GST-alpha, mu and -pi in ileum. Since GST plays an important role in protecting tissues from oxidative damage, our results highlight the role of the intestine against free radicals in physiological or pathological situations.  相似文献   
842.
Ozone (O3) is considered to be a major air pollutant that affects the yield of several sensitive crop species. Its concentration may reach phytotoxic levels several times during the growing season in Eastern Canada. This study was initiated to evaluate the O3 effects on alfalfa, a major crop species. The objective was to compare the yield and growth parameters of the main alfalfa cultivar used in Québec, Apica, to a cultivar more tolerant to O3, Team. Effects on root starch concentrations were also examined as this parameter is an important indicator of alfalfa perennity. The results obtained have shown that the forage yield of Apica was more reduced by O3 during two growing seasons than the yield of Team. For O3 concentrations of 20 to 40 nl liter(-1), yield reductions were 14-26% for Apica and 0-20% for Team. Whereas Apica could be considered more susceptible to O3 than Team, the latter has shown contrasting responses from year to year. This fact suggests that the mechanisms involved in O3-tolerance could be modulated by environmental conditions. At low O3 levels, Apica has shown reduced root growth in terms of dry matter and length. However, contrary to the current hypothesis that O3 would affect more root than shoot growth, we were unable to show a consistent alteration of the biomass allocation between the two. Ozone seems to reduce globally the growth of the whole plants. The greater O3-tolerance of Team could partly be associated to its capacity to maintain more leaves, to delay their senescence, or to keep a larger leaf:stem ratio under increasing levels of O3. At the end of the two growing seasons, the amount of starch reserves stored below ground was shown to be reduced by the current O3 levels. This reduction was mainly associated with a decrease in root biomass under O3 stress. This result support the hypothesis that O3 may accelerate alfalfa decline under field conditions.  相似文献   
843.
Oxides of nitrogen (NOx) [nitrogen oxide (NO) + nitrogen dioxide (NO2)] and sulfur dioxide (SO2) are removed individually in traditional air pollution control technologies. This study proposes a combined plasma scrubbing (CPS) system for simultaneous removal of SO2 and NOx. CPS consists of a dielectric barrier discharge (DBD) and wet scrubbing in series. DBD is used to generate nonthermal plasmas for converting NO to NO2. The water-soluble NO2 then can be removed by wet scrubbing accompanied with SO2 removal. In this work, CPS was tested with simulated exhausts in the laboratory and with diesel-generator exhausts in the field. Experimental results indicate that DBD is very efficient in converting NO to NO2. More than 90% removal of NO, NOx, and SO2 can be simultaneously achieved with CPS. Both sodium sulfide (Na2S) and sodium sulfite (Na2SO3) scrubbing solutions are good for NO2 and SO2 absorption. Energy efficiencies for NOx and SO2 removal are 17 and 18 g/kWh, respectively. The technical feasibility of CPS for simultaneous removal of NO, NO2, and SO2 from gas streams is successfully demonstrated in this study. However, production of carbon monoxide as a side-product (approximately 100 ppm) is found and should be considered.  相似文献   
844.
In this study, the culturability of indoor and outdoor airborne fungi was determined through long-term sampling (24-h) using a Button Personal Inhalable Aerosol Sampler. The air samples were collected during three seasons in six Cincinnati area homes that were free from moisture damage or visible mold. Cultivation and total microscopic enumeration methods were employed for the sample analysis. The geometric means of indoor and outdoor culturable fungal concentrations were 88 and 102 colony-forming units (CFU) m(-3), respectively, with a geometric mean of the I/O ratio equal to 0.66. Overall, 26 genera of culturable fungi were recovered from the indoor and outdoor samples. For total fungal spores, the indoor and outdoor geometric means were 211 and 605 spores m(-3), respectively, with a geometric mean of I/O ratio equal to 0.32. The identification revealed 37 fungal genera from indoor and outdoor samples based on the total spore analysis. Indoor and outdoor concentrations of culturable and total fungal spores showed significant correlations (r = 0.655, p<0.0001 and r = 0.633, p<0.0001, respectively). The indoor and outdoor median viabilities of fungi were 55% and 25%, respectively, which indicates that indoor environment provides more favorable survival conditions for the aerosolized fungi. Among the seasons, the highest indoor and outdoor culturability of fungi was observed in the fall. Cladosporium had a highest median value of culturability (38% and 33% for indoor and outdoor, respectively) followed by Aspergillus/Penicillium (9% and 2%) among predominant genera of fungi. Increased culturability of fungi inside the homes may have important implications because of the potential increase in the release of allergens from viable spores and pathogenicity of viable fungi on immunocompromised individuals.  相似文献   
845.
Enhanced rhizosphere degradation uses plants to stimulate the rhizosphere microbial community to degrade organic contaminants. We measured changes in microbial communities caused by the addition of two species of plants in a soil contaminated with 31,000 ppm of total petroleum hydrocarbons. Perennial ryegrass and/or alfalfa increased the number of rhizosphere bacteria in the hydrocarbon-contaminated soil. These plants also increased the number of bacteria capable of petroleum degradation as estimated by the most probable number (MPN) method. Eco-Biolog plates did not detect changes in metabolic diversity between bulk and rhizosphere samples but denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified partial 16S rDNA sequences indicated a shift in the bacterial community in the rhizosphere samples. Dice coefficient matrices derived from DGGE profiles showed similarities between the rhizospheres of alfalfa and perennial ryegrass/alfalfa mixture in the contaminated soil at week seven. Perennial ryegrass and perennial ryegrass/alfalfa mixture caused the greatest change in the rhizosphere bacterial community as determined by DGGE analysis. We concluded that plants altered the microbial population; these changes were plant-specific and could contribute to degradation of petroleum hydrocarbons in contaminated soil.  相似文献   
846.
In Anabastestudineus, the per cent changes noted in the aspartate aminotransferase (AAT) activities of gill, brain, intestine, liver, muscle and kidney until 6 hr of exposure to lethal concentration (10.5 mg/L disyston) were relatively much less when compared to those of sublethal concentration (4.0 mg/L disyston). But in the case of alanine aminotransferase (AIAT) activity, the tissues which showed such effect (paradoxical effect) were gill, brain and liver.  相似文献   
847.
Wax esters, which function as reserve fuels, account for 25 to 40% of the lipid of the pelagic copepod Calanus helgolandicus (Copepoda, Calanoida). In laboratory experiments with these crustaceans, diatoms (Lauderia borealis, Chaetoceros curvisetus, and Skeletonema costatum) and dinoflagellates (Gymnodinium splendens), which contained no wax esters, were used as food. Changes in the food concentration affected both the amount of lipid and the composition of the wax esters. Since the fatty acids of the triglycerides and wax esters of C. helgolandicus resembled the dietary fatty acid composition, it appeared that copepods incorporated their dietary fatty acids largely unchanged into their wax esters. The polyunsaturated alcohols of the wax esters did not correspond in carbon numbers or degrees of unsaturation to the dietary fatty acids. We postulate two different metabolic pools to explain the origin of these long chain alcohols. The phospholipid fatty acids were not affected by changes in the amount or type of food, probably because of their structural function.  相似文献   
848.
Shellfish samples (n = 384) from production areas, water samples from the same areas (n = 39) and from nearby sewage discharge points (n = 29) were analyzed for hepatitis E virus (HEV) by real-time and nested RT-PCR. Ten shellfish samples (2.6%) and five seawater samples (12.8%) tested positive for HEV; all characterized strains were G3 and showed high degree of sequence identity. An integrated surveillance in seafood and waters is relevant to reduce the risk of shellfish-associated illnesses.  相似文献   
849.
Objectives: Truck vehicles (TVs) have a different structure and stiffness than non-TVs and are used commercially for transporting goods. This study aimed to analyze whether truck occupants have a greater risk of serious injury than those of other types of vehicles.

Methods: Crash data were obtained from the Korean In-Depth Data Analysis Study (KIDAS) for calendar years 2011–2016. Vehicles involved in frontal crash were included and classified into TVs and non-TVs (passenger cars and sports utility vehicles). We compared the demographic characteristics and serious injuries by body region between the 2 groups and analyzed factors that contributed to the serious injury severity from frontal crashes.

Results: The analysis was based on 884 occupants; 177 (20.0%) were in TVs and 707 (80.0%) were in non-TVs. Non-TVs had more frontal airbags deployments than TVs (50.9% vs. 3.4%, P <.01). TV occupants were 4.8 times more likely to have a serious lower extremity (LE) injury (adjusted odds ratio [AOR] = 4.820; 95% confidence interval [CI], 2.407–9.653) and 2.5 times to have a serious abdominal injury (AOR = 2.465; 95% CI, 1.108–5.487) compared to non-TV occupants.

Conclusions: Truck occupants had more serious LE and abdominal injuries than those of other types of vehicles in frontal crashes. Structural improvement and legislative efforts to develop safety systems are necessary to improve the safety of truck occupants.  相似文献   

850.
Nanomaterials are applicable in the areas of reduction of environmental burden, reduction/treatment of industrial and agricultural wastes, and nonpoint source (NPS) pollution control. First, environmental burden reduction involves green process and engineering, emissions control, desulfurization/denitrification of nonrenewable energy sources, and improvement of agriculture and food systems. Second, reduction/treatment of industrial and agricultural wastes involves converting wastes into products, groundwater remediation, adsorption, delaying photocatalysis, and nanomembranes. Third, NPS pollution control involves controlling water pollution. Nanomaterials alter physical properties on a nanoscale due to their high specific surface area to volume ratio. They are used as catalysts, adsorbents, membranes, and additives to increase activity and capability due to their high specific surface areas and nano-sized effects. Thus, nanomaterials are more effective at treating environmental wastes because they reduce the amount of material needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号