首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   629篇
  免费   25篇
  国内免费   36篇
安全科学   30篇
废物处理   26篇
环保管理   142篇
综合类   129篇
基础理论   154篇
环境理论   2篇
污染及防治   136篇
评价与监测   47篇
社会与环境   19篇
灾害及防治   5篇
  2024年   2篇
  2023年   14篇
  2022年   6篇
  2021年   19篇
  2020年   13篇
  2019年   20篇
  2018年   23篇
  2017年   21篇
  2016年   41篇
  2015年   32篇
  2014年   28篇
  2013年   35篇
  2012年   26篇
  2011年   44篇
  2010年   37篇
  2009年   30篇
  2008年   40篇
  2007年   28篇
  2006年   20篇
  2005年   18篇
  2004年   17篇
  2003年   17篇
  2002年   19篇
  2001年   9篇
  2000年   11篇
  1999年   3篇
  1998年   4篇
  1997年   13篇
  1996年   16篇
  1995年   8篇
  1994年   5篇
  1993年   5篇
  1992年   8篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1987年   4篇
  1985年   2篇
  1982年   2篇
  1981年   2篇
  1978年   2篇
  1971年   2篇
  1968年   2篇
  1962年   3篇
  1960年   2篇
  1959年   2篇
  1956年   3篇
  1955年   3篇
  1954年   2篇
  1940年   2篇
排序方式: 共有690条查询结果,搜索用时 15 毫秒
661.
    
Restoration programs in the form of ex-situ breeding combined with reintroductions are becoming critical to counteract demographic declines and species losses. Such programs are increasingly using genetic management to improve conservation outcomes. However, the lack of long-term monitoring of genetic indicators following reintroduction prevents assessments of the trajectory and persistence of reintroduced populations. We carried out an extensive monitoring program in the wild for a threatened small-bodied fish (southern pygmy perch, Nannoperca australis) to assess the long-term genomic effects of its captive breeding and reintroduction. The species was rescued prior to its extirpation from the terminal lakes of Australia's Murray-Darling Basin, and then used for genetically informed captive breeding and reintroductions. Subsequent annual or biannual monitoring of abundance, fitness, and occupancy over a period of 11 years, combined with postreintroduction genetic sampling, revealed survival and recruitment of reintroduced fish. Genomic analyses based on data from the original wild rescued, captive born, and reintroduced cohorts revealed low inbreeding and strong maintenance of neutral and candidate adaptive genomic diversity across multiple generations. An increasing trend in the effective population size of the reintroduced population was consistent with field monitoring data in demonstrating successful re-establishment of the species. This provides a rare empirical example that the adaptive potential of a locally extinct population can be maintained during genetically informed ex-situ conservation breeding and reintroduction into the wild. Strategies to improve biodiversity restoration via ex-situ conservation should include genetic-based captive breeding and longitudinal monitoring of standing genomic variation in reintroduced populations.  相似文献   
662.
663.
664.
A prevailing view in dryland systems is that mammals are constrained by the scarcity of fertile soils and primary productivity. An alternative view is that predation is a primary driver of mammal assemblages, especially in Australia, where 2 introduced mesopredators—feral cat (Felis catus) and red fox (Vulpes vulpes)—are responsible for severe declines of dryland mammals. We evaluated productivity and predation as drivers of native mammal assemblage structure in dryland Australia. We used new data from 90 sites to examine the divers of extant mammal species richness and reconstructed historic mammal assemblages to determine proportional loss of mammal species across broad habitat types (landform and vegetation communities). Predation was supported as a major driver of extant mammal richness, but its effect was strongly mediated by habitat. Areas that were rugged or had dense grass cover supported more mammal species than the more productive and topographically simple areas. Twelve species in the critical weight range (CWR) (35–5500 g) that is most vulnerable to mesopredator predation were extirpated from the continent's central region, and the severity of loss of species correlated negatively with ruggedness and positively with productivity. Based on previous studies, we expect that habitat mediates predation from red foxes and feral cats because it affects these species’ densities and foraging efficiency. Large areas of rugged terrain provided vital refuge for Australian dryland mammals, and we predict such areas will support the persistence of CWR species in the face of ongoing mammal declines elsewhere in Australia.  相似文献   
665.
Arsenic (As) ranks first on the 2005 and 2007 hazardous substances priority lists compiled for the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This study describes two New Orleans soil As surveys: (1) a survey of composite soil samples from 286 census tracts and (2) a field survey of soil As at 38 play areas associated with the presence of chromated-copper-arsenate (CCA)-treated wood on residential and public properties. The survey of metropolitan New Orleans soils revealed a median As content of 1.5 mg/kg (range <0.2–16.4) and no distinctive differences between the soils of the city core and outlying areas. Play area accessible soils associated with CCA-treated wood (N = 32) had a median As of 57 mg/kg and 78% of the samples were ≥12 mg/kg, the Louisiana soil As standard. The field survey of play areas for CCA-treated wood (N = 132 samples at 38 sites) was conducted with a portable energy-dispersive X-ray fluorescence (XRF) analyzer. Seventy-five of 132 wood samples (56.8%) were deemed CCA-treated wood. Of the 38 play areas surveyed, 14 (36.8%) had CCA-treated wood. A significant association (Fisher’s exact p-value = 0.348 × 10−6) was found between CCA-treated wood and soil As (N = 75). At one elementary school CCA-treated woodchips (As range 813–1,654 mg As/kg) covered the playgrounds. The situation in New Orleans probably exists in play areas across the nation. These findings support a precautionary program for testing soils and wood for hazardous substances at all play areas intended for children.  相似文献   
666.
667.
The antipredator behaviour of prey organisms is shaped by a series of threat-sensitive trade-offs between the benefits associated with successful predator avoidance and a suite of other fitness-related behaviours such as foraging, mating and territorial defence. Recent research has shown that the overall intensity of antipredator response and the pattern of threat-sensitive trade-offs are influenced by current conditions, including variability in predation risk over a period of days to weeks. In this study, we tested the hypothesis that long-term predation pressure will likewise have shaped the nature of the threat-sensitive antipredator behaviour of wild-caught Trinidadian guppies (Poecilia reticulata). Female guppies were collected from two populations that have evolved under high- and low-predation pressure, respectively, in the Aripo River, Northern Mountain Range, Trinidad. Under laboratory conditions, we exposed shoals of three guppies to varying concentrations of conspecific damage-released chemical alarm cues. Lower Aripo (high-predation) guppies exhibited the strongest antipredator response when exposed to the highest alarm cue concentration and a graded decline in response intensity with decreasing concentrations of alarm cue. Upper Aripo (low-predation) guppies, however, exhibited a nongraded (hypersensitive) response pattern. Our results suggest that long-term predation pressure shapes not only the overall intensity of antipredator responses of Trinidadian guppies but also their threat-sensitive behavioural response patterns.  相似文献   
668.
We present a cellular automaton that simulates the interaction between a host tree and multiple potential mycorrhizal symbionts and generates testable hypotheses of how processes at the scale of individual root tips may explain mycorrhizal community composition. Existing theoretical biological market models imply that a single host is able to interact with and select from multiple symbionts to organize an optimal symbiont community. When evaluating the tree–symbiont interaction, two scales must be considered simultaneously: the scale of the entire host plant at which carbon utilization and nutrient demands operate, and the scale of the individual root tip, at which colonization and carbon-nutrient trade occurs. Three strategies that may be employed by the host tree for optimizing carbon use and nutrient acquisition through mycorrhizal symbiont communities are simulated: (1) carbon pool adjustment, in which the plant controls only the total amount of carbon to be distributed uniformly throughout the root system, (2) symbiont selection, wherein the plant opts either for or against the interaction at each fine root tip, and (3) selective carbon allocation, wherein the plant adjusts the amount of carbon allocated to each root tip based on the cost of nutrients. Strategies were tested over various nutrient availabilities (the amount of inorganically and organically bound nutrients). Success was defined on the basis of minimizing carbon expended for nutrient acquisition because this would allow more carbon to be utilized for growth and reproduction. In all cases, the symbiont selection and selective carbon allocation strategies were able to meet the nutritional requirements of the plant, but did not necessarily optimize carbon use. The carbon pool adjustment strategy is the only strategy that does not operate at the individual root tip scale, and the strategy was not successful when inorganic nutrients were scarce since there is no mechanism to exclude suboptimal symbionts. The combination of the symbiont selection strategy and the carbon pool adjustment resulted in optimal carbon use and nutrient acquisition under all environmental conditions but result in monospecific symbiont assemblages. On the other hand, the selective carbon allocation strategy is the only strategy that maintained successful, multi-symbiont communities. The simulations presented here thus imply clear hypotheses about the effect of nutrient availability on symbiont selection and mycorrhizal community richness and composition.  相似文献   
669.
Environmental Fluid Mechanics - This paper presents a set of stereoscopic particle image velocimetry (SPIV) measurements of a turbulent round water jet (jet exit Reynolds number $$Re = 2679$$ and...  相似文献   
670.
Fish body size, a key driver of many aspects of fish population biology and ecology, is affected by fisheries that deplete the largest individuals. Rockfish (genus Sebastes) are a diverse group that has been heavily fished on the U.S. West Coast in recent decades. We examined trawl survey data from 1980 to 2001 to determine spatial and temporal trends in body size and density of 16 shelf rockfish species, including six that are considered overfished. Mean individual mass and maximum observed mass declined in the majority of species in one or more zoogeographic regions between central California and Washington. Density changes were far more variable in time and space, but in all regions, density declines were most often associated with large-bodied rockfish. We next estimated the impact of size and density changes on energy consumption and fecundity in a five-species rockfish assemblage that includes bocaccio (S. paucispinis), a large-bodied, overfished species. Indexes of both consumption and fecundity by the assemblage increased in the southern portion of the study area between 1980 and 2001 but decreased in the northern portion. Allocation of energy and reproductive potential within the assemblage shifted dramatically: relative to bocaccio, total energy consumption and fecundity indexes for the other four species increased by orders of magnitude from 1980 to 2001. These changes in community structure may affect the ability of bocaccio and other large rockfish species to recover from overfishing, especially in light of long-term declines in zooplankton production that may also be affecting rockfish size and production. Addressing these issues may require a regional, multispecies management approach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号