首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
污染及防治   19篇
社会与环境   3篇
  2020年   2篇
  2018年   4篇
  2016年   4篇
  2013年   1篇
  2011年   1篇
  2010年   4篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
排序方式: 共有22条查询结果,搜索用时 375 毫秒
11.
Environmental Science and Pollution Research - Toxicological studies use “specialty chemicals” and, thus, should assess and report both identity and degree of purity (homogeneity) of...  相似文献   
12.
Environmental Science and Pollution Research - Hydroxylated polychlorinated biphenyls (OH-PCBs) are oxidative metabolites of PCBs and residuals found in original Aroclors. OH-PCBs are known to play...  相似文献   
13.
Lower chlorinated polychlorinated biphenyls (PCBs) are readily metabolized via hydroxylated metabolites to reactive PCB quinones. Although these PCB metabolites elicit biochemical changes by mechanisms involving cellular target molecules, such as the aryl hydrocarbon receptor, and toxicity by interacting with enzymes like topoisomerases, only few PCB quinones have been synthesized and their conformational properties investigated. Similar to the parent compounds, knowledge of the three-dimensional structure of PCB quinones may therefore be important to assess their fate and risk. To address this gap in our knowledge, the gas phase molecular structure of a series of PCB quinones was predicted using HF/3-21G, B3LYP/6-31G?? and UB3LYP/6-311G?? calculations and compared to the respective solid state structure. All three methods overestimated the Cl-C bond length, but otherwise provided a reasonable approximation of the solid state bond angles and bond lengths. Overall, the UB3LYP/6-311G?? level of theory yielded the best approximation of the molecular structure of PCB quinones in the solid state. Chlorine addition at the ortho position of both rings was found to increase the dihedral angle of the resulting quinone compound, which may have important implications for their interaction with cellular targets and, thus, their toxicity.  相似文献   
14.
Nineteen polychlorinated biphenyls (chiral or C-PCBs) exist as two stable rotational isomers (atropisomers) that are non-superimposable mirror images of each other. C-PCBs are released into the environment as racemic (i.e., equal) mixtures of both atropisomers and undergo atropisomeric enrichment due to biological, but not abiotic, processes. In particular, toxicokinetic studies provide important initial insights into atropselective processes involved in the disposition (i.e., absorption, distribution, biotransformation, and excretion) of C-PCBs. The toxicokinetic of C-PCBs is highly congener and species dependent. In particular, at lower trophic levels, abiotic processes play a predominant role in C-PCB toxicokinetics. Biotransformation plays an important role in the elimination of C-PCBs in mammals. The elimination of C-PCB follows the approximate order mammals > birds > amphibians > fish, mostly due to a corresponding decrease in metabolic capacity. A few studies have shown differences in the toxicokinetics of C-PCB atropisomers; however, more work is needed to understand the toxicokinetics of C-PCBs and the underlying biological processes. Such studies will not only contribute to our understanding of the fate of C-PCBs in aquatic and terrestrial food webs but also facilitate our understanding of human exposures to C-PCBs.  相似文献   
15.
A modified procedure for the synthesis of polychlorinated biphenyls (PCBs) utilizing the Suzuki-coupling, a palladium-catalyzed cross-coupling reaction, is described. The coupling of (chlorinated) benzene boronic acids with bromochlorobenzenes, using Pd(dppf)(2)Cl(2) (dppf = 1,1'-bis(diphenylphosphino)ferrocene) as the catalyst and aqueous sodium carbonate as the base, gave the desired PCB congeners in moderate to good yields. Eleven PCB congeners, including environmentally important PCB congeners and metabolites, were synthesized using this modified procedure. This new catalyst Pd(dppf)(2)Cl(2) offers the advantage of being less air-sensitive and has a longer shelf life compared to Pd(PPh(4))(4). Three new (di-)methoxylated PCB congeners were synthesized using the same procedure by either coupling a chlorinated benzene boronic acid with a bromo (di-)methoxybenzene or by coupling a (di-)methoxy benzene boronic acid with a chlorinated bromobenzene. The dimethoxylated PCB congeners were readily converted into the respective dihydroxylated PCB derivatives using boron tribromide in dichloromethane. This approach offers the advantage of high selectivity and moderate to good yields compared to conventional methods such as the Cadogan reaction and allows the use of less toxic starting materials.  相似文献   
16.
PCB 136 is an environmentally relevant chiral PCB congener, which has been found in vivo to be present in form of rotational isomers (atropisomers). Its atropselective biotransformation or neurotoxic effects linked with sensitization of ryanodine receptor suggest that it might interact also with other intracellular receptors in a stereospecific manner. However, possible atropselective effects of PCB 136 on nuclear receptor transactivation remain unknown. Therefore, in this study, atropselective effects of PCB 136 on nuclear receptors controlling endocrine signaling and/or expression of xenobiotic and steroid hormone catabolism were investigated. PCB136 atropisomers were found to exert differential effects on estrogen receptor (ER) activation; (+)-PCB 136 was estrogenic, while (?)-PCB 136 was antiestrogenic. In contrast, inhibition of androgen receptor (AR) activity was not stereospecific. Both PCB136 stereoisomers induced the constitutive androgen receptor (CAR)-dependent gene expression; however, no significant stereospecificity of PCB 136 atropisomers was observed. PCB136 was a partial inducer of the pregnane X receptor (PXR)-dependent gene expression. Here, (?)-PCB 136 was a significantly more potent inducer of PXR activity than (+)-PCB 136. Taken together, the present results indicate that at least two nuclear receptors participating in endocrine regulation or metabolism, ER and PXR, could be regulated in an atropselective manner by chiral PCB 136. The enantioselective enrichment of PCB atropisomers in animal and human tissues may thus have significant consequences for endocrine-disrupting effects of chiral ortho-substituted PCB congeners.  相似文献   
17.
Seventy eight out of the 209 possible polychlorinated biphenyl (PCB) congeners are chiral, 19 of which exist under ambient conditions as stable rotational isomers that are non-superimposable mirror images of each other. These congeners (C-PCBs) represent up to 6 % by weight of technical PCB mixtures and undergo considerable atropisomeric enrichment in wildlife, laboratory animals, and humans. The objective of this review is to summarize our current knowledge of the processes involved in the absorption, metabolism, and excretion of C-PCBs and their metabolites in laboratory animals and humans. C-PCBs are absorbed and excreted by passive diffusion, a process that, like other physicochemical processes, is inherently not atropselective. In mammals, metabolism by cytochrome P450 (P450) enzymes represents a major route of elimination for many C-PCBs. In vitro studies demonstrate that C-PCBs with a 2,3,6-trichlorosubstitution pattern in one phenyl ring are readily oxidized to hydroxylated PCB metabolites (HO-PCBs) by P450 enzymes, such as rat CYP2B1, human CYP2B6, and dog CYP2B11. The oxidation of C-PCBs is atropselective, thus resulting in a species- and congener-dependent atropisomeric enrichment of C-PCBs and their metabolites. This atropisomeric enrichment of C-PCBs and their metabolites likely plays a poorly understood role in the atropselective toxicity of C-PCBs and, therefore, warrants further investigation.  相似文献   
18.
Chiral polychlorinated biphenyl (PCB) congeners, such as PCB 136, are atropselectively metabolized to various hydroxylated PCB metabolites (HO-PCBs). The present study investigates the effect of two thiol antioxidants, glutathione and N-acetyl-cysteine (NAC), on profiles and chiral signatures of PCB 136 and its HO-PCB metabolites in rat liver microsomal incubations. Liver microsomes prepared from rats pretreated with phenobarbital were incubated with PCB 136 (5 μM) in the presence of the respective antioxidant (0–10 mM), and levels and chiral signatures of PCB 136 and its HO-PCB metabolites were determined. Three metabolites, 5-136 (2,2′,3,3′,6,6′-hexachlorobiphenyl-5-ol), 4-136 (2,2′,3,3′,6,6′-hexachlorobiphenyl-4-ol), and 4,5-136 (2,2′,3,3′,6,6′-hexachlorobiphenyl-4,5-diol), were detected in all incubations, with 5-136 being the major metabolite. Compared to microsomal incubations without antioxidant, levels of 4,5-136 increased with increasing antioxidant concentration, whereas levels of PCB 136 and both mono-HO-PCBs were not affected by the presence of either antioxidant. PCB 136, 4-136, and 5-136 displayed significant atropisomeric enrichment; however, the direction and extent of the atropisomeric enrichment was not altered in the presence of an antioxidant. Because 4,5-136 can either be conjugated to a sulfate or glucuronide metabolite that is readily excreted or further oxidized a potentially toxic PCB 136 quinone, the effect of both thiol antioxidants on 4,5-136 formation suggests that disruptions of glutathione homeostasis may alter the balance between both metabolic pathways and, thus, PCB 136 toxicity in vivo.  相似文献   
19.
Studies of environmental and toxic effects of polychlorinated biphenyls (PCBs) are ideally performed with PCB mixtures reflecting the composition of environmental PCB profiles to mimic actual effects and to account for complex interactions among individual PCB congeners. Unfortunately, only a few laboratory studies employing synthetic PCB mixtures have been reported, in part because of the challenges associated with the preparation of complex PCB mixtures containing many individual PCB congeners. The objective of this study was to develop a PCB mixture that resembles the average PCB profile recorded from 1996 to 2002 at a satellite station of the Integrated Atmospheric Deposition Network located at the Illinois Institute of Technology (IIT) in Chicago, Illinois, using commercial PCB mixtures. Initial simulations, using published Aroclor profiles, showed that a mixture containing 65% Aroclor 1242 and 35% Aroclor 1254 was a good approximation of the target profile. A synthetic Chicago air mixture (CAM) was prepared by mixing the respective Aroclors in this ratio, followed by GC/MS/MS analysis. Comparison of the PCB profile of the synthetic mixture with the target profile suggests that the synthetic PCB mixture is a good approximation of the average IIT Chicago air profiles (similarity coefficient cos θ = 0.82; average relative percent difference = 84%). The synthetic CAM was also a reasonable approximation of the average of 184 PCB profiles analyzed in 2007 at 37 sites throughout Chicago as part of the University of Iowa Superfund Basic Research Program (isbrp), with a cos θ of 0.70 and an average relative percent difference of 118%. While the CAM and the two Chicago air profiles contained primarily di- to pentachlorobiphenyls, higher chlorinated congeners, including congeners with seven or eight chlorine atoms, were underrepresented in the synthetic CAM. The calculated TCDD toxic equivalency quotients of the synthetic CAM (2.7 ng/mg PCB) and the IIT Chicago air profile (1.6 ng/mg PCB) were comparable, but lower by two orders of magnitude than the isbrp Chicago air profile (865 ng/mg PCB) due to surprisingly high PCB 126 levels in Chicago air. In contrast, the calculated neurotoxic equivalency quotients of the CAM (0.33 mg/mg PCB) and the two Chicago air profiles (0.44 and 0.30 mg/mg PCB, respectively) were similar. This study demonstrates the challenges and methods of creating and characterizing synthetic, environmental mixtures of PCBs.  相似文献   
20.
Nineteen polychlorinated biphenyl (PCB) congeners, such as 2,2′,3,3′,6-pentachlorobiphenyl (PCB 84), display axial chirality because they form stable rotational isomers, or atropisomers, that are non-superimposable mirror images of each other. Although chiral PCBs undergo atropselective biotransformation and atropselectively alter biological processes, the absolute structure of only a few PCB atropisomers has been determined experimentally. To help close this knowledge gap, pure PCB 84 atropisomers were obtained by semi-preparative liquid chromatography with two serially connected Nucleodex β-PM columns. The absolute configuration of both atropisomers was determined by X-ray single-crystal diffraction. The PCB 84 atropisomer eluting first and second on the Nucleodex β-PM column correspond to (aR)-(?)-PCB 84 and (aS)-(+)-PCB 84, respectively. Enantioselective gas chromatographic analysis with the β-cyclodextrin-based CP-Chirasil-Dex CB gas chromatography column showed the same elution order as the Nucleodex β-PM column. Based on earlier reports, the atropisomers eluting first and second on the BGB-172 gas chromatography column are (aR)-(?)-PCB 84 and (aS)-(+)-PCB 84, respectively. An inversion of the elution order is observed on the Cyclosil-B gas chromatography and Cellulose-3 liquid chromatography columns. These results advance the interpretation of environmental and human biomonitoring as well as toxicological studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号