首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22974篇
  免费   1390篇
  国内免费   7719篇
安全科学   1939篇
废物处理   1394篇
环保管理   1898篇
综合类   13386篇
基础理论   3592篇
环境理论   2篇
污染及防治   6823篇
评价与监测   1115篇
社会与环境   939篇
灾害及防治   995篇
  2024年   57篇
  2023年   376篇
  2022年   1156篇
  2021年   1068篇
  2020年   938篇
  2019年   766篇
  2018年   942篇
  2017年   1088篇
  2016年   1058篇
  2015年   1292篇
  2014年   1803篇
  2013年   2295篇
  2012年   1972篇
  2011年   2013篇
  2010年   1635篇
  2009年   1587篇
  2008年   1690篇
  2007年   1463篇
  2006年   1354篇
  2005年   904篇
  2004年   688篇
  2003年   765篇
  2002年   685篇
  2001年   527篇
  2000年   617篇
  1999年   559篇
  1998年   464篇
  1997年   481篇
  1996年   417篇
  1995年   315篇
  1994年   275篇
  1993年   214篇
  1992年   177篇
  1991年   112篇
  1990年   95篇
  1989年   49篇
  1988年   42篇
  1987年   28篇
  1986年   24篇
  1985年   13篇
  1984年   13篇
  1983年   15篇
  1982年   18篇
  1981年   13篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1976年   3篇
  1974年   2篇
  1973年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
841.
氯代挥发性有机物CVOCs催化氧化的研究进展   总被引:1,自引:1,他引:0       下载免费PDF全文
陈立  刘霄龙  施文博  朱廷钰 《环境工程》2017,35(10):114-119
氯代挥发性有机物(CVOCs)因其性质稳定、反应性差且毒性高,成为目前大气污染物净化技术中的难点。催化氧化法是去除CVOCs最有效的方法之一。对CVOCs催化氧化的研究进行综述,列举实例介绍了各类催化剂对常见CVOCs的催化研究现状,对催化性能、催化剂失活、反应机理等方面进行了详细分析,总结出积碳和氯中毒是催化剂失活的两大主要因素,而载体性质、活性组分分散度、水等对催化性能产生很大影响。最后,展望了未来催化剂的研究重点。  相似文献   
842.
The impact of Fe concentrations on the growth of Microcystisaeruginosa in aquatic systems under high nitrate and low chlorophyll conditions was studied. The responses of cell density, total and cell chlorophyll-a intracellular Fe content and organic elemental composition of M. aeruginosa to different concentration gradients of Fe(III) in the solutions were analysed. The results showed that the proliferation speeds of M. aeruginosa were: (1) decelerated when the Fe(III) concentration was lower than 50 μg/L in the solutions, (2) promoted and positively related to the increase of Fe(III) concentration from 100 to 500 μg/L in the solutions over the experimental period, and (3) promoted in the early stage but decelerated in later stages by excess adsorption of Fe by cells when the Fe(III) concentration was higher than 500 μg/L in the solutions. The maximum cell density, total and cell chlorophyll-a were all observed at 500 μg Fe(III)/L concentration. The organic elemental composition of M. aeruginosa was also affected by the concentration of Fe(III) in the solutions, and the molecular formula of M. aeruginosa should be expressed as C7–7.5H14O0.8–1.3N3.5–5 according to the functions for different Fe(III) concentrations. Cell carbon and oxygen content appeared to increase slightly, while cell nitrogen content appeared to decrease as Fe(III) concentrations increased from 100 to 500 μg/L in the solutions. This was attributed to the competition of photosynthesis and nitrogen adsorption under varying cell Fe content.  相似文献   
843.
王琳  李雪  王丽 《环境科学研究》2017,30(7):1098-1104
为研究生物阴极在MFC(微生物燃料电池)中的应用,分别以粒径为2~4 mm的颗粒活性炭和粒径为2~4、4~8、8~12 mm的颗粒石墨为阴极基质材料,构建升流复合生物阴极型单室MFC,研究阴极基质材料的种类和粒径对MFC的产电性能和净水效能的影响.结果表明:当阳极基质材料为2~4 mm粒径的颗粒活性炭时,燃料电池中利用玻璃纤维取代离子交换膜,阴极基质材料为选用4~8 mm粒径颗粒石墨的反应柱产电量最大,为534 mV(外电阻为1 000 Ω),最大功率密度达到631.6 mW/m3,库伦效率为3.82%;阴极的pH越低越有利于阴极的产电反应;不同阴极基质材料的MFC对CODCr去除率均在80%左右,TN、NH4+-N及TP的去除率最高可分别达到79%、93%和34%.研究显示,阴极基质材料的种类和粒径对MFC的产电性影响较大,但对其净水效能的影响不大.   相似文献   
844.
Soil contamination with tetrabromobisphenol A(TBBPA) has caused great concerns;however, the presence of heavy metals and soil organic matter on the biodegradation of TBBPA is still unclear. We isolated Pseudomonas sp. strain CDT, a TBBPA-degrading bacterium, from activated sludge and incubated it with ~(14)C-labeled TBBPA for 87 days in the absence and presence of Cu~(2+)and humic acids(HA). TBBPA was degraded to organic-solvent extractable(59.4% ± 2.2%) and non-extractable(25.1% ± 1.3%) metabolites,mineralized to CO_2(4.8% ± 0.8%), and assimilated into cells(10.6% ± 0.9%) at the end of incubation. When Cu~(2+)was present, the transformation of extractable metabolites into non-extractable metabolites and mineralization were inhibited, possibly due to the toxicity of Cu~(2+)to cells. HA significantly inhibited both dissipation and mineralization of TBBPA and altered the fate of TBBPA in the culture by formation of HA-bound residues that amounted to 22.1% ± 3.7% of the transformed TBBPA. The inhibition from HA was attributed to adsorption of TBBPA and formation of bound residues with HA via reaction of reactive metabolites with HA molecules, which decreased bioavailability of TBBPA and metabolites in the culture. When Cu~(2+)and HA were both present, Cu~(2+)significantly promoted the HA inhibition on TBBPA dissipation but not on metabolite degradation. The results provide insights into individual and interactive effects of Cu~(2+)and soil organic matter on the biotransformation of TBBPA and indicate that soil organic matter plays an essential role in determining the fate of organic pollutants in soil and mitigating heavy metal toxicity.  相似文献   
845.
Ambient volatile organic compounds pollution in China   总被引:1,自引:0,他引:1  
Owing to rapid economic and industrial development, China has been suffering from degraded air quality and visibility. Volatile organic compounds (VOCs) are important precursors to the formation of ground-level ozone and hence photochemical smog. Some VOCs adversely affect human health. Therefore, VOCs have recently elicited public concern and given new impetus to scientific interest. China is now implementing a series of polices to control VOCs pollution. The key to formulating policy is understanding the ambient VOCs pollution status. This paper mainly analyzes the species, levels, sources, and spatial distributions of VOCs in ambient air. The results show that the concentrations of ambient VOCs in China are much higher than those of developed countries such as the United States and Japan, especial benzene, which exceeds available standards. At the same time, the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) of various VOCs are calculated. Aromatics and alkenes have much higher OFPs, while aromatics have higher SOAFP. The OFPs of ambient VOCs in the cities of Beijing, Guangzhou and Changchun are very high, and the SOAFP of ambient VOCs in the cities of Hangzhou, Guangzhou and Changchun are higher.  相似文献   
846.
The selective catalytic reduction(SCR) activities of the MoO_3 doped V/WTi catalysts prepared by the incipient wetness impregnation method at low temperature were investigated.The results showed that the addition of MoO_3 could enhance the NO_ xconversion at low temperature and the best SCR activity was obtained when the dosage of MoO_3 reached5 wt.%. The NH3-TPD and DRIFTS experiments indicated that the addition of MoO_3 changed the type and number of acid sites on the surface of catalysts and reaction activities of acid sites were altered at the same time. The redox capacity and amount of active oxygen species got improved for V3Mo5/WTi catalyst, which could be confirmed by the H_2-TPR and transient response experiments. Water vapor inhibited the NO_xconversion at low temperature. Deposition of ammonium sulfate or bisulfate might be main reason for the loss of catalytic activity in the presence of SO_2 at low temperature. Choosing the suitable NH_3/NO ratio and elevation of reaction temperature both could weaken the influence of SO_2 on the SCR activity of the V3Mo5/WTi catalyst. Thermal treatment of the deactivated catalyst at350°C could get the low temperature activity recovered. The decrease of GHSV improved the de NO_x efficiency at low temperature and we speculated that the rational technological process and operation parameters could contribute to the application of this kind of catalysts in real industrial environment.  相似文献   
847.
The effect of free ammonia on volatile fatty acid(VFA)accumulation and process instability was studied using a lab-scale anaerobic digester fed by two typical bio-wastes:fruit and vegetable waste(FVW)and food waste(FW)at 35°C with an organic loading rate(OLR)of 3.0 kg VS/(m~3·day). The inhibitory effects of free ammonia on methanogenesis were observed due to the low C/N ratio of each substrate(15.6 and 17.2,respectively). A high concentration of free ammonia inhibited methanogenesis resulting in the accumulation of VFAs and a low methane yield. In the inhibited state,acetate accumulated more quickly than propionate and was the main type of accumulated VFA. The co-accumulation of ammonia and VFAs led to an "inhibited steady state" and the ammonia was the main inhibitory substance that triggered the process perturbation. By statistical significance test and VFA fluctuation ratio analysis,the free ammonia inhibition threshold was identified as 45 mg/L. Moreover,propionate,iso-butyrate and valerate were determined to be the three most sensitive VFA parameters that were subject to ammonia inhibition.  相似文献   
848.
A simple approach to enhance the photocatalytic activity of red phosphorus(P) was developed.A mechanical ball milling method was applied to reduce the size of red P and to deposit graphene quantum dots onto red P. The product was characterized by scanning electron microscopy, transmission electron microscopy, contact angle measurements, zeta-potential measurements, X-ray diffraction and UV–vis absorption spectroscopy. The product exhibited high visible-light-driven photocatalytic performance in the photodegradation of rhodamine B.  相似文献   
849.
Visible-light-driven photocatalysis as a green technology has attracted a lot of attention due to its potential applications in environmental remediation. Vesicle Cd Se nano-semiconductor photocatalyst are successfully prepared by a gas template method and characterized by a variety of methods. The vesicle Cd Se nano-semiconductors display enhanced photocatalytic performance for the degradation of tetracycline hydrochloride, the photodegradation rate of78.824% was achieved by vesicle Cd Se, which exhibited an increase of 31.779% compared to granular Cd Se. Such an exceptional photocatalytic capability can be attributed to the unique structure of the vesicle Cd Se nano-semiconductor with enhanced light absorption ability and excellent carrier transport capability. Meanwhile, the large surface area of the vesicle Cd Se nano-semiconductor can increase the contact probability between catalyst and target and provide more surface-active centers. The photocatalytic mechanisms are analyzed by active species quenching. It indicates that h+and UO_2~-are the main active species which play a major role in catalyzing environmental toxic pollutants. Simultaneously, the vesicle Cd Se nano-semiconductor had high efficiency and stability.  相似文献   
850.
This study aimed to reveal how amoxicillin(AMX) affected the microbial community and the spread mechanism of antibiotic resistance genes(ARGs) in the AMX manufacture wastewater treatment system. For this purpose, a 1.47 L expanded granular sludge bed(EGSB) reactor was designed and run for 241 days treating artificial AMX manufacture wastewater. 454 pyrosequencing was applied to analyze functional microorganisms in the system. The antibiotic genes OXA_(-1), OXA_(-2), OXA_(-10), TEM_(-1), CTX-M_(-1), class I integrons(intI1) and 16 SrRNA genes were also examined in sludge samples. The results showed that the genera Ignavibacterium, Phocoenobacter,Spirochaeta, Aminobacterium and Cloacibacillus contributed to the degradation of different organic compounds(such as various sugars and amines). And the relative quantification of eachβ-lactam resistance gene in the study was changed with the increasing of AMX concentration.Furthermore the vertical gene transfer was the main driver for the spread of ARGs rather than horizontal transfer pathways in the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号