首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   1篇
  国内免费   4篇
安全科学   3篇
废物处理   5篇
环保管理   6篇
综合类   27篇
基础理论   18篇
污染及防治   70篇
评价与监测   16篇
社会与环境   3篇
灾害及防治   1篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   7篇
  2013年   4篇
  2012年   4篇
  2011年   5篇
  2010年   12篇
  2009年   12篇
  2008年   12篇
  2007年   4篇
  2006年   4篇
  2005年   5篇
  2004年   26篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1985年   1篇
  1984年   3篇
  1982年   3篇
  1971年   1篇
排序方式: 共有149条查询结果,搜索用时 15 毫秒
121.
Abstract

Objective: The handover of vehicle control from automated to manual operation is a critical aspect of interaction between drivers and automated driving systems (ADS). In some cases, it is possible that the ADS may fail to detect an object. In this event, the driver must be aware of the situation and resume control of the vehicle without assistance from the system. Consequently, the driver must fulfill the following 2 main roles while driving: (1) monitor the vehicle trajectory and surrounding traffic environment and (2) actively take over vehicle control if the driver identifies a potential issue along the trajectory. An effective human–machine interface (HMI) is required that enables the driver to fulfill these roles. This article proposes an HMI that constantly indicates the future position of the vehicle.

Methods: This research used the Toyota Dynamic Driving Simulator to evaluate the effect of the proposed HMI and compares the proposed HMI with an HMI that notifies the driver when the vehicle trajectory changes. A total of 48 test subjects were divided into 2 groups of 24: One group used the HMI that constantly indicated the future position of the vehicle and the other group used the HMI that provided information when the vehicle trajectory changed.

The following instructions were given to the test subjects: (1) to not hold the steering wheel and to allow the vehicle to drive itself, (2) to constantly monitor the surrounding traffic environment because the functions of the ADS are limited, and (3) to take over driving if necessary.

The driving simulator experiments were composed of an initial 10-min acclimatization period and a 10-min evaluation period. Approximately 10?min after the start of the evaluation period, a scenario occurred in which the ADS failed to detect an object on the vehicle trajectory, potentially resulting in a collision if the driver did not actively take over control and manually avoid the object.

Results: The collision avoidance rate of the HMI that constantly indicated the future position of the vehicle was higher than that of the HMI that notified the driver of trajectory changes, χ2 = 6.38, P < .05. The steering wheel hands-on and steering override timings were also faster with the proposed HMI (t test; P < .05).

Conclusions: This research confirmed that constantly indicating the position of the vehicle several seconds in the future facilitates active driver intervention when an ADS is in operation.  相似文献   
122.
Journal of Material Cycles and Waste Management - The objective of this study is to evaluate the influence of the addition of garden waste (GW) on the performance of food waste (FW) anaerobic...  相似文献   
123.
124.
在评价北极陆地生态系统影响时,人们常常强调物种和生态系统对环境变化响应的地理变化,这种变化往往与气候、生物多样性、植被带、生态系统结构和功能的南-北梯度相关联,可是,环境、生态系统的功能和结构上,以及环境史和当前气候变化的明显东-西变化显然也很重要.尽管一些地方变得温暖,但另一些地方却降温了,海洋、群岛和山脉等地理屏障的东西差异过去也对物种和植被带响应气候变化而改变分布区的能力产生了很大影响,同时,这些地理屏障为种群遗传分化和生物多样性热点区的形成提供了必要的隔离条件,这些屏障在未来气候变暖时,也将影响物种重新分布的能力.为了说明这种东西向的变化,同时也避免过分笼统或过于专业化,基于大尺度的天气和气候形成因素,北极气候影响评价项目确定了4个主要亚区.通过模拟与4个北极气候影响评价亚区有关的主要信息,导致物种分布区发生改变的地理屏障,特别是大陆的分布和海洋产生的隔离,明显会影响植被带的向北移动.对植被区向北移动的地理限制或者促进将影响将来碳的贮存和释放,以及生物圈与大气之间水和能量的交换.此外,气候变化使受威胁物种数量在各个亚区之间差别很大(白令海地区别尤其是热点),各个植被亚区重新分布的能力差异将影响每个区的生物多样性.总而言之,亚区分析表明,在整个北极地区水平上概括生态系统结构和功能的反应、物种的丧失,以及生物圈对气候系统的反馈的趋势是困难的,说明需要对北极陆地生态系统对于气候变化响应的空间变化性有深刻的认识.  相似文献   
125.
Larch forests are distributed extensively in the east Eurasian continent and are expected to play a significant role in the terrestrial ecosystem carbon cycling process. In view of the fact that studies on carbon exchange for this important biome have been very limited, we have initiated a long-term flux observation in a larch forest ecosystem in Hokkaido in northern Japan since 2000. The net ecosystem CO2 exchange (NEE) showed large seasonal and diurnal variation. Generally, the larch forest ecosystem released CO2 in nighttime and assimilated CO2 in daytime during the growing season from May to October. The ecosystem started to become a net carbon sink in May, reaching a maximum carbon uptake as high as 186 g C m−2 month−1 in June. With the yellowing, senescing and leaf fall, the ecosystem turned into a carbon source in November. During the non-growing season, the larch forest ecosystem became a net source of CO2, releasing an average of 16.7 g C m−2 month−1. Overall, the ecosystem sequestered 141–240 g C m−2 yr−1 in 2001. The NEE was significantly influenced by environmental factors. Respiration of the ecosystem, for example, was exponentially dependent on air temperature, while photosynthesis was related to the incident PAR in a manner consistent with the Michaelis–Menten model. Although the vapor pressure deficit (VPD) was scarcely higher than 15 hPa, the CO2 uptake rate was also depressed when VPD surpassed 10 hPa.  相似文献   
126.
127.
Environmental manipulation experiments showed that species respond individualistically to each environmental-change variable. The greatest responses of plants were generally to nutrient, particularly nitrogen, addition. Summer warming experiments showed that woody plant responses were dominant and that mosses and lichens became less abundant. Responses to warming were controlled by moisture availability and snow cover. Many invertebrates increased population growth in response to summer warming, as long as desiccation was not induced. CO2 and UV-B enrichment experiments showed that plant and animal responses were small. However, some microorganisms and species of fungi were sensitive to increased UV-B and some intensive mutagenic actions could, perhaps, lead to unexpected epidemic outbreaks. Tundra soil heating, CO2 enrichment and amendment with mineral nutrients generally accelerated microbial activity. Algae are likely to dominate cyanobacteria in milder climates. Expected increases in winter freeze-thaw cycles leading to ice-crust formation are likely to severely reduce winter survival rate and disrupt the population dynamics of many terrestrial animals. A deeper snow cover is likely to restrict access to winter pastures by reindeer/caribou and their ability to flee from predators while any earlier onset of the snow-free period is likely to stimulate increased plant growth. Initial species responses to climate change might occur at the sub-species level: an Arctic plant or animal species with high genetic/racial diversity has proved an ability to adapt to different environmental conditions in the past and is likely to do so also in the future. Indigenous knowledge, air photographs, satellite images and monitoring show that changes in the distributions of some species are already occurring: Arctic vegetation is becoming more shrubby and more productive, there have been recent changes in the ranges of caribou, and "new" species of insects and birds previously associated with areas south of the treeline have been recorded. In contrast, almost all Arctic breeding bird species are declining and models predict further quite dramatic reductions of the populations of tundra birds due to warming. Species-climate response surface models predict potential future ranges of current Arctic species that are often markedly reduced and displaced northwards in response to warming. In contrast, invertebrates and microorganisms are very likely to quickly expand their ranges northwards into the Arctic.  相似文献   
128.
129.
ABSTRACT: The purpose of this paper is to present a new approach for the spatially distributed modeling of water flow during storm events. Distributed modeling of flow during storm events is an important basis for any environmental modeling, including turbidity or sediment transport. During the initial phase of a rainstorm, surface runoff is the main contributor of flow. To provide the spatial components for distributed hydrological modeling a Geographic Information System (GIS) was used to map and visualize contributing areas around a stream channel. Stream segments were defined using the hydrologic response unit (HRU) concept. Lateral flows were derived from GIS output for each segment of the stream and at each time interval of the rain storm and were routed using the kinematic routing equation. This approach is new in hydrological modeling and can be used to enhance many existing simulations. The model is also unique in the fine time scale (i.e., intervals are on the order of minutes). Model results showed good correlation with measured discharge values; however, further studies of contributing area behavior, its relationship with soil types and slope categories, and the influence of watershed size are needed to improve model performance. This model will be used in the future as the basis to model turbidity in streams.  相似文献   
130.
Biweekly atmospheric depositions of (137)Cs were measured in Rokkasho, Aomori, Japan from March 2000 to March 2006 to study recent (137)Cs deposition. Although the deposition level was generally lower than the detectable limit, deposition samples collected in spring occasionally had measurable levels of (137)Cs. The annual (137)Cs deposition from 2001 to 2005 was 0.04-0.69 Bq m(-2) with a mean value of 0.27 Bq m(-2). Depositions of insoluble Al, Fe and Ti were strongly correlated with the (137)Cs deposition, suggesting that suspension of soil particles was the main source of the recent (137)Cs deposition. Asian dust events were coincident with some of the significant (137)Cs depositions in spring. It was found that the ratios of (137)Cs/Al and Fe/Al could be used as indices for discriminating Asian dust from suspension of the local surface soil. Backward trajectory analysis suggested southern Mongolian and northeastern China regions as sources of the significant (137)Cs depositions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号