首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   0篇
  国内免费   2篇
安全科学   1篇
废物处理   6篇
环保管理   3篇
综合类   13篇
基础理论   12篇
污染及防治   32篇
评价与监测   4篇
社会与环境   5篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2018年   3篇
  2017年   5篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   5篇
  2012年   4篇
  2011年   2篇
  2010年   5篇
  2009年   3篇
  2008年   6篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  1999年   1篇
  1997年   1篇
  1993年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
51.
The ability of Quercus crassipes acorn shells (QCS) to remove Cr(VI) and total chromium from aqueous solutions was investigated as a function of the solution pH, ionic strength, and background electrolytes. It was found that Cr(VI) and total chromium removal by QCS depended strongly on the pH of the solution. Cr(VI) removal rate increased as the solution pH decreased. The optimum pH for total chromium removal varied depending on contact time. NaCl ionic strengths lower than 200 mM did not affect chromium removal. The presence of 20 mM monovalent cations and anions, and of divalent cations, slightly decreased the removal of Cr(VI) and total chromium by QCS; in contrast, divalent anions (SO4 2?, PO4 2?, CO3 2?) significantly affected the removal of Cr(VI) and total chromium. The biosorption kinetics of chromium ions followed the pseudo-second-order model at all solution pH levels, NaCl ionic strengths and background electrolytes tested. Results suggest that QCS may be a potential low-cost biosorbent for the removal of Cr(VI) and total chromium from aqueous solutions containing various impurities.  相似文献   
52.

The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater has been reported as a result of fecal shedding of infected individuals. In this study, the occurrence of SARS-CoV-2 RNA was explored in primary-treated wastewater from two municipal wastewater treatment plants in Quintana Roo, Mexico, along with groundwater from sinkholes, a household well, and submarine groundwater discharges. Physicochemical variables were obtained in situ, and coliphage densities were determined. Three virus concentration methods based on adsorption-elution and sequential filtration were used followed by RNA isolation. Quantification of SARS-CoV-2 was done by RT-qPCR using the CDC 2020 assay, 2019-nCoV_N1 and 2019-nCoV_N2. The Pepper mild mottle virus, one of the most abundant RNA viruses in wastewater was quantified by RT-qPCR and compared to SARS-CoV-2 concentrations. The use of three combined virus concentration methods together with two qPCR assays allowed the detection of SARS-CoV-2 RNA in 58% of the wastewater samples analyzed, whereas none of the groundwater samples were positive for SARS-CoV-2 RNA. Concentrations of SARS-CoV-2 in wastewater were from 1.8 × 103 to 7.5 × 103 genome copies per liter (GC l−1), using the N1 RT-qPCR assay, and from 2.4 × 102 to 5.9 × 103 GC l−1 using the N2 RT-qPCR assay. Based on PMMoV prevalence detected in all wastewater and groundwater samples tested, the three viral concentration methods used could be successfully applied for SARS-CoV-2 RNA detection in further studies. This study represents the first detection of SARS-CoV-2 RNA in wastewater in southeast Mexico and provides a baseline for developing a wastewater-based epidemiology approach in the area.

  相似文献   
53.
The retention of chromium(III) from a 2000ppm chromium basic sulfate and tannery waste solution at pH 4.5 using modified hydroxy-aluminum bentonites (OH-Al bentonites) as adsorbents was studied. OH-Al bentonite was prepared by mixing clay with a hydrolyzed commercial chlorohydroxy Al solution. The modified Al bentonites were obtained by (a) a treatment with 0.5M sodium chloride and (b) a treatment with a Na-hexametaphosphate solution (HMP) after adding sodium chloride. The effect of heating the adsorbents at 100, 500, 700 and 800 degrees C on Cr retention as a function of time was also analyzed. Cr retention by modified OH-Al bentonite with HMP increased with time (up to 100mgCr/g) where modified OH-Al bentonite was twice that of untreated bentonite. The relatively high uptake of metal from the salt solution by modified OH-Al bentonite treated at 800 degrees C, in which a complete interlayer collapse occurred, indicated the importance of the contribution of external surface sites to the retention capacity. The maximum Cr uptake from a water waste was 24mg/g, due to interferences and different chromium species in the industrial solution.  相似文献   
54.
55.
Environmental Chemistry Letters - The rise of emerging contaminants in waters challenges the scientific community and water treatment stakeholders to design remediation techniques that are simple,...  相似文献   
56.
57.
The aim of this study was to determine the feasibility of karyotyping ectopic Fallopian tube pregnancies utilizing dividing cytotrophoblast cells. Villi from 78 ectopic conceptuses were processed by the direct chromosome technique and cytogenetic diagnosis was successful in 60 cases (76-9 per cent). The amount of villi obtained, as well as villus morphology, was correlated with cytogenetic success rate. Histological examination of the Fallopian tube was also carried out. A total of 47 cases were chromosomally abnormal (78-3 per cent), which is the highest frequency of cytogenetic abnormalities reported to date.  相似文献   
58.
59.
Environmental surveillance of poliovirus (PV) plays an important role in the global program for eradication of wild PV. The bag-mediated filtration system (BMFS) was first developed in 2014 and enhances PV surveillance when compared to the two-phase grab method currently recommended by the World Health Organization (WHO). In this study, the BMFS design was improved and tested for its usability in wastewater and wastewater-impacted surface waters in Nairobi, Kenya. Modifications made to the BMFS included the size, color, and shape of the collection bags, the filter housing used, and the device used to elute the samples from the filters. The modified BMFS concentrated 3–10 L down to 10 mL, which resulted in an effective volume assayed (900–3000 mL) that was 6–20 times greater than the effective volume assayed for samples processed by the WHO algorithm (150 mL). The system developed allows for sampling and in-field virus concentration, followed by transportation of the filter for further analysis with simpler logistics than the current methods. This may ultimately reduce the likelihood of false-negative samples by increasing the effective volume assayed compared to samples processed by the WHO algorithm, making the BMFS a valuable sampling system for wastewater and wastewater-impacted surface waters.  相似文献   
60.
Aquaculture effluents are rich in nitrogen compounds that may enhance local primary productivity, leading to the development of algae blooms. The goal of this study was to assess the potential use of naturally occurring green macroalgae (Ulva and Enteromorpha) as bioremediators for nitrogen-rich effluents from a fish aquaculture plant, by evaluating their respective uptake dynamics under controlled conditions. Ulva and Enteromorpha were incubated separately in aquaculture effluent from a local pilot station. Algae tissue and water samples were collected periodically along 4 h. For each sample, nitrate, nitrite, and ammonia concentrations were quantified in the effluent, while internal algae reserve pools and nitrate reductase activity (NRA) were determined within the algae tissues. Both macroalgae absorbed all dissolved inorganic nitrogen compounds in less than 1 h, favoring ammonia over nitrate. Ulva stored nitrate temporarily as an internal reserve and only used it after ammonia availability decreased, whereas Enteromorpha stored and metabolized ammonia and nitrate simultaneously. These distinct dynamics of ammonia and nitrate uptake supported an increase in NRA during the experiment. This study supports the hypothesis that Ulva or Enteromorpha can be used as bioremediators in aquaculture effluents to mitigate excess of dissolved inorganic nitrogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号