首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
废物处理   1篇
环保管理   2篇
综合类   1篇
基础理论   2篇
污染及防治   7篇
社会与环境   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2008年   4篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1991年   2篇
  1981年   1篇
排序方式: 共有14条查询结果,搜索用时 140 毫秒
11.
In situ biodegradation of benzene, toluene, and xylenes in a petroleum hydrocarbon contaminated aquifer near Fairbanks, Alaska was assessed using carbon and hydrogen compound specific isotope analysis (CSIA) of benzene and toluene and analysis of signature metabolites for toluene (benzylsuccinate) and xylenes (methylbenzylsuccinates). Carbon and hydrogen isotope ratios of benzene were between -25.9 per thousand and -26.8 per thousand for delta13C and -119 per thousand and -136 per thousand for delta2H, suggesting that biodegradation of benzene is unlikely at this site. However, biodegradation of both xylenes and toluene were documented in this subarctic aquifer. Biodegradation of xylenes was indicated by the presence of methylbenzylsuccinates with concentrations of 17-50 microg/L in three wells. Anaerobic toluene biodegradation was also indicated by benzylsuccinate concentrations of 10-49 microg/L in the three wells with the highest toluene concentrations (1500-5000 microg/L toluene). Since benzylsuccinate typically accounts for a very small fraction of the toluene present in groundwater (generally <1 mol%), the signature metabolite approach works best at higher toluene concentrations when it is not constrained by detection limits. In wells with lower toluene concentrations (410-640 microg/L), carbon and hydrogen isotopic values were enriched by up to approximately 2 per thousand for delta13C and approximately 70 per thousand for delta2H. This evidence of isotopic fractionation verifies the effects of biodegradation in these low concentration wells where metabolites may already be below detection limits. The combined use of signature metabolite and CSIA data is particularly valuable given the challenge of verifying biodegradation in subarctic environments where degradation rates are typically much slower than in temperate environments.  相似文献   
12.
Finite-difference and finite-element methods of approximation have been extended to solve the one-dimensional nonlinear partial differential equations that describe the simultaneous transport of heat, moisture and chemical in the unsaturated zone. Especially for chemical transport, nodal spacing criteria are required to minimize numerical dispersion and oscillatory behavior in the solution vector for chemical concentration. Conservative criteria for nodal spacing for saturated flow can be used to set nodal spacing for unsaturated zone transport. When nodal spacing criteria are satisfied, for the same set of transport and boundary conditions, chemical concentration profiles calculated by the two numerical methods will be almost the same. A situation that is simulated very well with one-dimensional models, is the application of chemicals to land surfaces. To compare and contrast the characteristics of solutions given by the two numerical methods, moisture content, temperature and chemical concentration profiles for a 75-day period after application in the unsaturated zone are calculated for two representative types of organic chemicals. In the first, the chemical is very slowly degraded in the subsurface environment but strongly sorbed to soil surfaces. In the second, the chemical is rapidly degraded but weakly sorbed to soil surfaces. Because of differences in sorption coefficients and mechanisms of degradation, for the same set of hydrodynamic properties of the subsurface, the weakly sorbed chemical is more widely distributed throughout the unsaturated zone, whereas the strongly sorbed chemical stays very close to where it is put initially with little penetration into the subsurface. Satisfying nodal spacing criteria minimizes the impact of the method of approximation on the calculated solutions of the transport equations. For better model predictive performance, however, there are needs for more fundamental information on processes governing transport in the subsurface.  相似文献   
13.
温室效应加剧导致的气候变化将会引起水文系统的变化.随着气候要素的变化,水文变化将会在全球呈现出区域差异性.因此,有必要开展局地和区域尺度上的水文变化影响研究,评价不同区域将会受到怎样的影响.本研究旨在对广泛的瑞典流域上气候变化的水文影响(响应)进行评估.我们采用不同的方法,将气候模型中产生的气候变化信号转换输入到水文模型中.利用瑞典区域气候模拟计划(SWECLIM)生成的区域气候情景,我们进行了几次水文模型模拟研究.得出的基本结论是根据流域的地理位置处于瑞典北部或南部,气候变化对河道水流的分区影响是显著不同的.此外,预测的水文变化不仅与用于确定区域气候模型边界条件的全球气候模型的选择有关,而且与人为气体排放情景的选取有关.  相似文献   
14.
A method for the analysis of 10 perfluorinated compounds (PFCs) in whole fish homogenate is presented and applied to 60 fish samples collected from the Ohio, Missouri, and upper Mississippi Rivers in 2005. Method accuracy ranged between 86 and 125% with limits of quantitation between 0.2 and 10 ng/g wet weight. Intra- and inter-batch precision was generally ±20%. Perfluorooctane sulfonate (PFOS) was the predominant compound identified in these samples, contributing over 80% of total PFC composition in the fish from these rivers, with median PFOS concentrations of 24.4, 31.8, and 53.9 ng/g wet wt in the Missouri, Ohio, and Mississippi Rivers, respectively. Median PFOS levels were significantly (p = 0.01) elevated in piscivorous fish (88.0 ng/g) when compared with non-piscivorous fish (15.9 ng/g). The 10 samples with PFOS concentrations above 200 ng/g were broadly scattered across all three rivers, providing evidence of the widespread presence of this compound in these US waterways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号