首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10835篇
  免费   94篇
  国内免费   571篇
安全科学   89篇
废物处理   824篇
环保管理   1320篇
综合类   1705篇
基础理论   3300篇
污染及防治   2176篇
评价与监测   1061篇
社会与环境   948篇
灾害及防治   77篇
  2024年   3篇
  2023年   29篇
  2022年   85篇
  2021年   77篇
  2020年   57篇
  2019年   48篇
  2018年   1509篇
  2017年   1442篇
  2016年   1273篇
  2015年   215篇
  2014年   125篇
  2013年   135篇
  2012年   571篇
  2011年   1448篇
  2010年   771篇
  2009年   678篇
  2008年   979篇
  2007年   1309篇
  2006年   72篇
  2005年   63篇
  2004年   65篇
  2003年   118篇
  2002年   137篇
  2001年   46篇
  2000年   38篇
  1999年   30篇
  1998年   32篇
  1997年   24篇
  1996年   29篇
  1995年   16篇
  1994年   8篇
  1993年   5篇
  1992年   10篇
  1991年   7篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   12篇
  1983年   9篇
  1982年   1篇
  1981年   1篇
  1935年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Nanomaterials are applicable in the areas of reduction of environmental burden, reduction/treatment of industrial and agricultural wastes, and nonpoint source (NPS) pollution control. First, environmental burden reduction involves green process and engineering, emissions control, desulfurization/denitrification of nonrenewable energy sources, and improvement of agriculture and food systems. Second, reduction/treatment of industrial and agricultural wastes involves converting wastes into products, groundwater remediation, adsorption, delaying photocatalysis, and nanomembranes. Third, NPS pollution control involves controlling water pollution. Nanomaterials alter physical properties on a nanoscale due to their high specific surface area to volume ratio. They are used as catalysts, adsorbents, membranes, and additives to increase activity and capability due to their high specific surface areas and nano-sized effects. Thus, nanomaterials are more effective at treating environmental wastes because they reduce the amount of material needed.  相似文献   
102.
Photocatalytic process represents a promising approach to overcome the pollution challenge associated with the antibiotics-containing wastewater. This study provides a green, efficient and novel approach to remove cephalosporins, particularly cefoperazone sodium (CFP). Bi4O5Br2 was chosen for the first time to systematically study its degradation for CFP, including the analysis of material structure, degradation performance, the structure and toxicity of the transformation products, etc. The degradation rate results indicated that Bi4O5Br2 had an excellent catalytic activity leading to 78% CFP removal compared with the pure BiOBr (38%) within 120 min of visible light irradiation. In addition, the Bi4O5Br2 presents high stability and good organic carbon removal efficiency. The effects of the solution pH (3.12 - 8.75) on catalytic activity revealed that CFP was mainly photocatalyzed under acidic conditions and hydrolyzed under alkaline conditions. Combined with active species and degradation product identification, the photocatalytic degradation pathways of CFP by Bi4O5Br2 was proposed, including hydrolysis, oxidation, reduction and decarboxylation. Most importantly, the identified products were all hydrolysis rather than oxidation byproducts transformed from the intermediate of β-lactam bond cleavage in CFP molecule, quite different from the mostly previous studies. Furthermore, the final products were demonstrated to be less toxic through the toxicity analysis. Overall, this study illustrates the detailed mechanism of CFP degradation by Bi4O5Br2 and confirms Bi4O5Br2 to be a promising material for the photodegradation of CFP.  相似文献   
103.
澳门是我国人口密度最大的城市.选择澳门特别行政区不同功能区绿地土壤为研究对象,首先,通过野外布点采样,调查分析了表层土壤中9种重金属元素(Cr、Ni、Cu、Cd、Pb、Cr、Zn、As、Hg)和16种优先控制多环芳烃(PAHs)的分布特征;其次,利用累积频率分布曲线法估算了土壤重金属和PAHs的土壤污染背景;最后,基于...  相似文献   
104.
粗放型绿色屋顶对多环芳烃的控制效果   总被引:1,自引:1,他引:1  
沈庆然  侯娟  李田 《环境科学》2016,37(12):4700-4705
构建4个粗放型绿色屋顶中试设施,考察不同基质组成的设施在实际降雨条件下出水中16种多环芳烃(PAHs)质量浓度并与降雨、沥青屋面径流、空白对照设施的出水进行对比.结果表明,8场监测降雨事件中,4种模拟屋面设施出流PAHs的平均质量浓度分别为145、166、151、160 ng·L~(-1),沥青屋面和空白对照设施出流PAHs的平均质量浓度分别为900 ng·L-1和270 ng·L~(-1),4个模拟设施出流PAHs质量浓度显著低于沥青屋面和空白对照设施;从质量负荷控制的角度,4个模拟设施均能有效控制屋面径流PAHs负荷,与空白屋面相比,平均负荷削减率为71.76%.绿色屋顶对PAHs的去除机制以基质材料的截留及吸附为主,同样基质配比的情况下,增加基质层厚度,能改善设施对PAHs的去除效果.将传统沥青屋面改造为粗放型绿色屋顶,有助于控制屋面径流PAHs排放.  相似文献   
105.
We explored the feasibility and removal mechanism of removing 2-chlorobiphenyl(2-Cl BP)from soil–water system using granular activated carbon(GAC) impregnated with nanoscale zerovalent iron(reactive activated carbon or RAC).The RAC samples were successfully synthesized by the liquid precipitation method.The mesoporous GAC based RAC with low iron content(1.32%) exhibited higher 2-Cl BP removal efficiency(54.6%) in the water phase.The result of Langmuir–Hinshelwood kinetic model implied that the different molecular structures between 2-Cl BP and trichloroethylene(TCE) resulted in more difference in dechlorination reaction rates on RAC than adsorption capacities.Compared to removing2-Cl BP in the water phase,RAC removed the 2-Cl BP more slowly in the soil phase due to the significant external mass transfer resistance.However,in the soil phase,a better removal capacity of RAC was observed than its base GAC because the chemical dechlorination played a more important role in total removal process for 2-Cl BP.This important result verified the effectiveness of RAC for removing 2-Cl BP in the soil phase.Although reducing the total RAC removal rate of 2-Cl BP,soil organic matter(SOM),especially the soft carbon,also served as an electron transfer medium to promote the dechlorination of 2-Cl BP in the long term.  相似文献   
106.
Underground coal gasification (UCG) is an advancing technology that is receiving considerable global attention as an economic and environmentally friendly alternative for exploitation of coal deposits. UCG has the potential to decrease greenhouse gas emissions (GHG) during the development and utilization of coal resources. In this paper, the life cycle of UCG from in situ coal gasification to utilization for electricity generation is analyzed and compared with coal extraction through conventional coal mining and utilization in power plants. Four life cycle assessment models have been developed and analyzed to compare (greenhouse gas) GHG emissions of coal mining, coal gasification and power generation through conventional pulverized coal fired power plants (PCC), supercritical coal fired (SCPC) power plants, integrated gasification combined cycle plants for coal (Coal-IGCC), and combined cycle gas turbine plants for UCG (UCG-CCGT). The analysis shows that UCG is comparable to these latest technologies and in fact, the GHG emissions from UCG are about 28 % less than the conventional PCC plant. When combined with the economic superiority, UCG has a clear advantage over competing technologies. The comparison also shows that there is considerable reduction in the GHG emissions with the development of technology and improvements in generation efficiencies.  相似文献   
107.
Farm nutrient management has been identified as one of the most important factors determining the economic and environmental performance of dairy cattle (Bos taurus) farming systems. Given the environmental problems associated with dairy farms, such as emissions of greenhouse gases (GHG), and the complex interaction between farm management, environment and genetics, there is a need to develop robust tools which enable scientists and policy makers to study all these interactions. This paper describes the development of a simple model called NUTGRANJA 2.0 to evaluate GHG emissions and nitrogen (N) and phosphorus (P) losses from dairy farms. NUTGRANJA 2.0 is an empirical mass-balance model developed in order to simulate the main transfers and flows of N and P through the different stages of the dairy farm management. A model sensitivity test was carried out to explore some of the sensitivities of the model in relation to the simulation of GHG and N emissions. This test indicated that both management (e.g. milk yield per cow, annual fertiliser N rate) and site-specific factors (e.g. % clover (Trifolium) in the sward, soil type, and % land slope) had a large effect on most of the model state variables studied (e.g. GHG and N losses).  相似文献   
108.
The paper estimates and compares the level of Reducing Emissions from Deforestation and Degradation (REDD+) payments required to compensate for the opportunity costs (OCs) of stopping the conversion of montane forest and miombo woodlands into cropland in two agro-ecological zones in Morogoro Region in Tanzania. Data collected from 250 households were used for OC estimation. REDD+ payment was estimated as the net present value (NPV) of agricultural rent and forest rent during land clearing, minus net returns from sustainable wood harvest, divided by the corresponding reduction in carbon stock. The median compensation required to protect the current carbon stock in the two vegetation types ranged from USD 1 tCO2e?1 for the montane forest to USD 39 tCO2e?1 for the degraded miombo woodlands, of which up to 70 % and 16 %, respectively, were for compensating OCs from forest rent during land clearing. The figures were significantly higher when the cost of farmers’ own labor was not taken into account in NPV calculations. The results also highlighted that incentives in the form of sustainable harvests could offset up to 55 % of the total median OC to protect the montane forest and up to 45 % to protect the miombo woodlands, depending on the wage rates. The findings suggest that given the possible factors that can potentially affect estimates of REDD+ payments, avoiding deforestation of the montane forest would be feasible under the REDD+ scheme. However, implementation of the policy in villages around the miombo area would require very high compensation levels.  相似文献   
109.
The Zambezi River Basin in southern Africa is relatively undeveloped from both a hydropower and irrigated agriculture perspective, despite the existence of the large Kariba and Cahora Bassa dams. Accelerating economic growth increases the potential for competition for water between hydropower and irrigated agriculture, and climate change will add additional stresses to this system. The objective of this study was to assess the vulnerability of major existing and planned new hydropower plants to changes in climate and upstream irrigation demand. Our results show that Kariba is highly vulnerable to a drying climate, potentially reducing average electricity generation by 12 %. Furthermore, the expansion of Kariba generating capacity is unlikely to deliver the expected increases in production even under a favourable climate. The planned Batoka Gorge plant may also not be able to reach the anticipated production levels from the original feasibility study. Cahora Bassa’s expansion is viable under a wetting climate, but its potential is less likely to be realised under a drying climate. The planned Mphanda Nkuwa plant can reach expected production levels under both climates if hydropower is given water allocation priority, but not if irrigation is prioritised, which is likely. For both Cahora Bassa and Mphanda Nkuwa, prioritising irrigation demand over hydropower could severely compromise these plants’ output. Therefore, while climate change is the most important overall driver of variation in hydropower potential, increased irrigation demand will also have a major negative impact on downstream plants in Mozambique. This implies that climate change and upstream development must be explicitly incorporated into both project and system expansion planning.  相似文献   
110.
Public policies are promoting biofuels as an alternative to fossil fuel consumption in order to mitigate greenhouse gas (GHG) emissions. However, the mitigation benefit can be at least partially compromised by emissions occurring during feedstock production. One of the key sources of GHG emissions from biofuel feedstock production, as well as conventional crops, is soil nitrous oxide (N2O), which is largely driven by nitrogen (N) management. Our objective was to determine how much GHG emissions could be reduced by encouraging alternative N management practices through application of nitrification inhibitors and a cap on N fertilization. We used the US Renewable Fuel Standards (RFS2) as the basis for a case study to evaluate technical and economic drivers influencing the N management mitigation strategies. We estimated soil N2O emissions using the DayCent ecosystem model and applied the US Forest and Agricultural Sector Optimization Model with Greenhouse Gases (FASOMGHG) to project GHG emissions for the agricultural sector, as influenced by biofuel scenarios and N management options. Relative to the current RSF2 policy with no N management interventions, results show decreases in N2O emissions ranging from 3 to 4 % for the agricultural sector (5.5–6.5 million metric tonnes CO2?eq.?year?1; 1 million metric tonnes is equivalent to a Teragram) in response to a cap that reduces N fertilizer application and even larger reductions with application of nitrification inhibitors, ranging from 9 to 10 % (15.5–16.6 million tonnes CO2?eq.?year?1). The results demonstrate that climate and energy policies promoting biofuel production could consider options to manage the N cycle with alternative fertilization practices for the agricultural sector and likely enhance the mitigation of GHG emissions associated with biofuels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号