首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9776篇
  免费   365篇
  国内免费   3790篇
安全科学   734篇
废物处理   644篇
环保管理   859篇
综合类   5070篇
基础理论   1645篇
环境理论   2篇
污染及防治   3870篇
评价与监测   392篇
社会与环境   319篇
灾害及防治   396篇
  2024年   5篇
  2023年   151篇
  2022年   481篇
  2021年   389篇
  2020年   283篇
  2019年   264篇
  2018年   354篇
  2017年   456篇
  2016年   521篇
  2015年   667篇
  2014年   808篇
  2013年   1045篇
  2012年   901篇
  2011年   889篇
  2010年   687篇
  2009年   654篇
  2008年   733篇
  2007年   584篇
  2006年   495篇
  2005年   367篇
  2004年   287篇
  2003年   352篇
  2002年   304篇
  2001年   252篇
  2000年   260篇
  1999年   244篇
  1998年   248篇
  1997年   242篇
  1996年   222篇
  1995年   173篇
  1994年   118篇
  1993年   122篇
  1992年   104篇
  1991年   79篇
  1990年   54篇
  1989年   26篇
  1988年   27篇
  1987年   10篇
  1986年   17篇
  1985年   11篇
  1984年   11篇
  1983年   8篇
  1982年   9篇
  1981年   8篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1968年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
501.
刘君 《环境与发展》2020,(2):157-157,159
本文主要是围绕地表水环境遥感检测展开讨论,全面介绍了水环境检测的关键技术和系统,建立改进双峰法的水体分布遥感提取方法,并以具体地区为例进行分析,采用不同方法建立解析方法,从根本上提升反演方法的区域和积极适用性,希望能够对相关人员起到参考性价值。  相似文献   
502.
近年来在大气污染的防治工作中,柴油车污染防治的重要性日渐凸显.本文通过测试和文献检索等方法收集了97组与柴油车排放颗粒物无机元素排放有关的数据,采用k-means均值聚类分析的方法对数据进行分类并对分类结果进行分析,得出柴油车无机元素排放占颗粒物比例的大致区间为:Si(0—4.62%)、Al(0—1.53%)、Ca(0—4.09%)、Na(0—2.61%)、Mg(0—2.68%)、K(0—0.85%)、Fe(0—3.4%)、Zn(0—0.54%)、Cu(0—1.49%)、Ni(0—0.06%),且所得无机元素的排放区间的置信水平均大于94%.同时得到的柴油车排放颗粒物无机元素分析结果,可以为后续柴油车排放颗粒物无机元素数据分析以及相关污染治理提供参考,进而促进我国大气环境质量的改善、更好地保障人们身体健康.  相似文献   
503.
总结了涪陵页岩气田开发初期钻井岩屑采用固化填埋方式处置存在占地面积大且易产生二次污染隐患等问题,因地制宜地探索钻井岩屑的资源化利用。分析了水基岩屑随钻预处理和油基岩屑热脱附技术,结合钻井岩屑的理化性质,开展了水基岩屑脱水后干渣制路基材料、制砖及水泥窑协同处置,油基岩屑灰渣制混凝土、制砖及水泥窑协同处置的探索和实践,基于环境安全、技术稳定可靠、消纳量大的原则,最终形成了涪陵页岩气田钻井岩屑资源化方案:水基岩屑"随钻预处理、水泥窑协同处置",油基岩屑"热脱附、水泥窑协同处置",实现了钻井岩屑的资源化综合利用。  相似文献   
504.
• Pig feces is the predominant excrement produced by animal husbandry in China. • The PF, Pig-1-BacTaqMan, and Pig-2-BacTaqMan MST assays showed better performance. • The pig-specific MST assays can contribute to managing the pig fecal pollution. In China, pig feces is the predominant source of excrement produced by animal husbandry. Improper use or direct discharge of pig feces can result in contamination of natural water systems. Microbial source tracking (MST) technology can identify the sources of fecal pollution in environmental water, and contribute to the management of pig fecal pollution by local environmental protection agencies. However, the accuracy of such assays can be context-dependent, and they have not been comprehensively evaluated under Chinese conditions. We aimed to compare the performance of five previously reported pig-specific MST assays (PF, Pig-Bac1SYBR, Pig-Bac2SYBR, Pig-1-BacTaqMan, and Pig-2-BacTaqMan, which are based on Bacteroidales 16S rRNA gene markers) and apply them in two rivers of North China. We collected a total of 173 fecal samples from pigs, cows, goats, chickens, humans, and horses across China. The PF assay optimized in this study showed outstanding qualitative performance and achieved 100% specificity and sensitivity. However, the two SYBR green qPCR assays (Pig-Bac1SYBR and Pig-Bac2SYBR) cross-reacted with most non-pig fecal samples. In contrast, both the Pig-1-BacTaqMan and Pig-2-BacTaqMan assays gave 100% specificity and sensitivity. Of these, the Pig-2-BacTaqMan assay showed higher reproducibility. Our results regarding the specificity of these pig-specific MST assays differ from those reported in Thailand, Japan, and America. Using the PF and Pig-2-BacTaqMan assays, a field test comparing the levels of pig fecal pollution in rivers near a pig farm before and after comprehensive environmental pollution governance indicated that pig fecal pollution was effectively controlled at this location.  相似文献   
505.
• Upgrade process was investigated in a full-scale landfill leachate treatment plant. • The optimization of DO can technically achieve the shift from CND to PND process. • Nitrosomonas was mainly responsible for ammonium oxidation in PND system. • An obviously enrichment of Thauera was found in the PND process. • Enhanced metabolic potentials on organics was found during the process update. Because of the low access to biodegradable organic substances used for denitrification, the partial nitrification-denitrification process has been considered as a low-cost, sustainable alternative for landfill leachate treatment. In this study, the process upgrade from conventional to partial nitrification-denitrification was comprehensively investigated in a full-scale landfill leachate treatment plant (LLTP). The partial nitrification-denitrification system was successfully achieved through the optimizing dissolved oxygen and the external carbon source, with effluent nitrogen concentrations lower than 150 mg/L. Moreover, the upgrading process facilitated the enrichment of Nitrosomonas (abundance increased from 0.4% to 3.3%), which was also evidenced by increased abundance of amoA/B/C genes carried by Nitrosomonas. Although Nitrospira (accounting for 0.1%–0.6%) was found to stably exist in the reactor tank, considerable nitrite accumulation occurred in the reactor (reaching 98.8 mg/L), indicating high-efficiency of the partial nitrification process. Moreover, the abundance of Thauera, the dominant denitrifying bacteria responsible for nitrite reduction, gradually increased from 0.60% to 5.52% during the upgrade process. This process caused great changes in the microbial community, inducing continuous succession of heterotrophic bacteria accompanied by enhanced metabolic potentials toward organic substances. The results obtained in this study advanced our understanding of the operation of a partial nitrification-denitrification system and provided a technical case for the upgrade of currently existing full-scale LLTPs.  相似文献   
506.
• The rice growth was promoted by nano-TiO2 of 0.1–100 mg/L. • Nano-TiO2 enhanced the energy storage in photosynthesis. • Nano-TiO2 reduced energy consumption in carbohydrate metabolism and TCA cycle. Titanium dioxide nanoparticle (nano-TiO2), as an excellent UV absorbent and photo-catalyst, has been widely applied in modern industry, thus inevitably discharged into environment. We proposed that nano-TiO2 in soil can promote crop yield through photosynthetic and metabolic disturbance, therefore, we investigated the effects of nano-TiO2 exposure on related physiologic-biochemical properties of rice (Oryza sativa L.). Results showed that rice biomass was increased >30% at every applied dosage (0.1–100 mg/L) of nano-TiO2. The actual photosynthetic rate (Y(II)) significantly increased by 10.0% and 17.2% in the treatments of 10 and 100 mg/L respectively, indicating an increased energy production from photosynthesis. Besides, non-photochemical quenching (Y(NPQ)) significantly decreased by 19.8%–26.0% of the control in all treatments respectively, representing a decline in heat dissipation. Detailed metabolism fingerprinting further revealed that a fortified transformation of monosaccharides (D-fructose, D-galactose, and D-talose) to disaccharides (D-cellobiose, and D-lactose) was accompanied with a weakened citric acid cycle, confirming the decrease of energy consumption in metabolism. All these results elucidated that nano-TiO2 promoted rice growth through the upregulation of energy storage in photosynthesis and the downregulation of energy consumption in metabolism. This study provides a mechanistic understanding of the stress-response hormesis of rice after exposure to nano-TiO2, and provides worthy information on the potential application and risk of nanomaterials in agricultural production.  相似文献   
507.
This study investigated crystallization mechanisms for the formation of lead aluminosilicate by sintering lead stabilization with kaolin-based precursors. PbAl2Si2O8 was found to be the only stable lead aluminosilicate in low-PbO system and demonstrates its highly intrinsic resistance to acid attack in leaching test. A three-stage PbAl2Si2O8 formation mechanism was supported by the results of the changing temperature in the system. Amorphization of sintered products was observed in both PbO/kaolinite and PbO/mullite systems at 600–700°C. When the temperature was increased to 750–900°C, the crystallochemical formation of lead aluminosilicates (i.e., Pb4Al4Si3O16, Pb6Al6Si2O21, and PbAl2Si2O8) was observed. Pb4Al4Si3O16 and Pb6Al6Si2O21 were found to be the intermediate phases at 700–900°C. Finally, PbAl2Si2O8 was found to be the only crystallite phase to host Pb at above 950°C. A maximum of 80% and 96.7% Pb can be incorporated into PbAl2Si2O8 in PbO/kaolinite and PbO/mullite systems, respectively, but the final products exhibited different microstructures. To reduce environmental hazard of lead, this strategy demonstrated a preferred mechanism of immobilizing lead into PbAl2Si2O8 structure via kaolin-based precursors.  相似文献   
508.
Environmental Science and Pollution Research - In this study, an improved matrix-type network data envelopment analysis (NDEA) model with undesirable output was developed to evaluate the...  相似文献   
509.
Environmental Science and Pollution Research - In this study, porous activated carbon balls supported by nanoscale zero-valent iron composites (Fe@PACB-700) were used for the first time for the...  相似文献   
510.
Environmental Science and Pollution Research - In the context of global warming and environmental deterioration, the environment impact assessment is a crucial institutional guaranty to assure less...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号