首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13350篇
  免费   491篇
  国内免费   4748篇
安全科学   955篇
废物处理   849篇
环保管理   1145篇
综合类   6859篇
基础理论   2283篇
环境理论   3篇
污染及防治   4956篇
评价与监测   532篇
社会与环境   432篇
灾害及防治   575篇
  2024年   7篇
  2023年   207篇
  2022年   631篇
  2021年   498篇
  2020年   391篇
  2019年   341篇
  2018年   485篇
  2017年   596篇
  2016年   573篇
  2015年   725篇
  2014年   1053篇
  2013年   1368篇
  2012年   1189篇
  2011年   1170篇
  2010年   919篇
  2009年   921篇
  2008年   974篇
  2007年   792篇
  2006年   689篇
  2005年   515篇
  2004年   396篇
  2003年   492篇
  2002年   420篇
  2001年   355篇
  2000年   379篇
  1999年   378篇
  1998年   383篇
  1997年   328篇
  1996年   297篇
  1995年   249篇
  1994年   182篇
  1993年   175篇
  1992年   153篇
  1991年   93篇
  1990年   73篇
  1989年   37篇
  1988年   40篇
  1987年   16篇
  1986年   24篇
  1985年   11篇
  1984年   12篇
  1983年   10篇
  1982年   11篇
  1981年   13篇
  1979年   2篇
  1977年   2篇
  1975年   2篇
  1974年   3篇
  1972年   3篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
在饮用水输配系统中,来源于管壁生物膜的有机物可能耗氯并生成消毒副产物(DBPs),包括二氯乙腈(DCAN)与二氯乙酰胺(DCAcAm)等高毒性含氮DBPs(N-DBPs).研究考察管网常见的细菌与其胞外聚合物(EPS)以及模拟管壁生物膜氯化与氯胺化后DCAN与DCAcAm的生成,并与天然有机物(NOM)和水源水有机物进行比较.结果显示,铜绿假单胞菌、恶臭假单胞菌与藤黄微球菌与氯反应生成的DCAN、DCAcAm浓度分别为1.48~2.02、0.21~0.38μg·mg~(-1)(mg~(-1)以TOC计),高于同反应条件下NOM的生成量;相比于氯化反应,3株细菌细胞氯胺化生成的DCAN与DCAcAm浓度明显更低.3株菌的EPS也是氯与氯胺化反应生成DCAN与DCAcAm的前体物,且其氯胺化反应生成的DCAcAm浓度高于氯化反应生成的.与NOM、水源水相比,模拟管壁生物膜氯化后生成的N-DBPs与三氯甲烷(TCM)浓度比更高,表明生物膜有机物比NOM与水源水有机物更倾向生成DCAN与DCAcAm类N-DBPs,且模拟管壁生物膜氯胺化的DCAcAm生成量高于氯化反应的,说明管壁生物膜有机物是供水管网系统中DCAN与DCAcAm类N-DBPs的重要前体物.  相似文献   
22.
铅通过食物链的迁移和积累对人类健康的毒害作用日益为社会所重视,而水稻是人类铅摄入的主要途径之一,因此,对稻田土壤铅的迁入途径及其过程特征的研究十分必要.为了探明湖南地区远离城镇、工矿区的丘陵稻区铅的输入、迁移、滞留机制,选择位于湘东北地域的汩罗市桃林林场的林地-山塘-稻田汇水区系统作为研究对象,在水稻大田生长期间,原位研究其大气沉降、岗地径流、山塘水、稻田水、水稻生长等过程的铅通量.结果表明:①输入系统的铅源是大气沉降,其中,在水稻生育前期通过东南季风输入的区域外源铅占90%;②山塘是大气沉降铅的主要集纳地貌单元,存留了大气沉降输入岗地和山塘总铅的66%;③林-稻汇水区系统岗地铅净留存28.8~57.7 g·hm-2,山塘铅净留存604.3~961.9 g·hm-2,稻田铅净留存89.6~90.9 g·hm-2;而对照系统岗地铅净输出173.3 g·hm-2,山塘净留存3427.6 g·hm-2,稻田净留存87.1 g·hm-2;④岗地和山塘对铅的截留量能够互补;⑤从岗地通过径流-山塘水过程迁移到稻田的大分子有机物能够增强稻田对铅的截留.综上所述,丘陵林-稻汇水区系统中铅的循环与大气沉降有关,系统内岗地森林类型、郁闭度、降水产流及泥沙、有机物的输出都会影响铅在系统中的迁移和分配.  相似文献   
23.
固定源可凝结颗粒物稀释采样器的设计   总被引:1,自引:0,他引:1  
固定污染源烟气排放进入大气环境后稀释降温,气相中部分饱和蒸气压较低的组分转化为可凝结颗粒物,这部分颗粒物在固定源烟气颗粒物监测中通常被忽略.为评价固定源可凝结颗粒物的排放情况,本文设计开发并评测了一套稀释采样器.稀释采样器稀释比在10:1~40:1范围内,混合停留时间为5~10 s.实验室评测结果表明,稀释气颗粒物背景值低((~0.1±0.08) 个·cm-3),稀释采样器气密性良好,烟气和稀释气能够均匀混合,颗粒物损失较少,细颗粒物 (PM2.5)损失在5%以下.本稀释采样器能模拟烟气与环境空气混合降温过程,可用于固定源可凝结颗粒物的测量.  相似文献   
24.
Carbon–silica materials with hierarchical pores consisting of micropores and mesopores were prepared by introducing nanocarbon microspheres derived from biomass sugar into silica gel channels in a hydrothermal environment.The physicochemical properties of the materials were characterized by nitrogen physical adsorption(BET),scanning electron microscopy(SEM),and thermogravimetric(TG),and the adsorption properties of various organic waste gases were investigated.The results showed that microporous carbon materials were introduced successfully into the silica gel channels,thus showing the high adsorption capacity of activated carbon in high humidity organic waste gas,and the high stability and mechanical strength of the silica gel.The dynamic adsorption behavior confirmed that the carbon–silica material had excellent adsorption capacity for different volatile organic compounds(VOCs).Furthermore,the carbon–silica material exhibited excellent desorption characteristics:adsorbed toluene was completely desorbed at 150℃,thereby showing superior regeneration characteristics.Both features were attributed to the formation of hierarchical pores.  相似文献   
25.
To clarify the aerosol hygroscopic growth and optical properties of the Pearl River Delta(PRD)region,integrated observations were conducted in Heshan City of Guangdong Province from October 19 to November 17,2014.The concentrations and chemical compositions of PM_(2.5),aerosol optical properties and meteorological parameters were measured.The mean value of PM_(2.5) increased from less than 35(excellent) to 35-75 μg/m~3(good) and then to greater than 75 μg/m~3(pollution),corresponding to mean PM_(2.5) values of 24.9,51.2,and 93.3 μg/m~3,respectively.The aerosol scattering hygroscopic growth factor(f(RH = 80%)) values were 2.0,2.12,and 2.18 for the excellent,good,and pollution levels,respectively.The atmospheric extinction coefficient(σext)and the absorption coefficient of aerosols(σ_(ap)) increased,and the single scattering albedo(SSA)decreased from the excellent to the pollution levels.For different air mass sources,under excellent and good levels,the land air mass from northern Heshan had lower f(RH) and σ_(sp) values.In addition,the mixed aerosol from the sea and coastal cities had lower f(RH) and showed that the local sources of coastal cities have higher scattering characteristics in pollution periods.  相似文献   
26.
Waste cutting emulsions are difficult to treat efficiently owing to their complex composition and stable emulsified structure. As an important treatment method for emulsions, chemical demulsification is faced with challenges such as low flocs–water separation rates and high sludge production. Hence, in this study, Fe3O4 magnetic nanoparticles (MNPs) were used to enhance chemical demulsification performance for treating waste cutting emulsions under a magnetic field. The addition of MNPs significantly decreased the time required to attain sludge–water separation and sludge compression equilibrium, from 210 to 20 min. In addition, the volume percentage of sludge produced at the equilibrium state was reduced from 45% to 10%. This excellent flocculation–separation performance was stable over a pH range of 3–11. The magnetization of the flocculants and oil droplets to form a flocculant–MNP–oil droplet composite, and the magnetic transfer of the composite were two key processes that enhanced the separation of cutting emulsions. Specifically, the interactions among MNPs, flocculants, and oil droplets were important in the magnetization process, which was controlled by the structures and properties of the three components. Under the magnetic field, the magnetized flocculant–MNP–oil droplet composites were considerably accelerated and separated from water, and the sludge was simultaneously compressed. Thus, this study expands the applicability of magnetic separation techniques in the treatment of complex waste cutting emulsions.  相似文献   
27.
On-road driving emissions of six liquefied natural gas(LNG) and diesel semi-trailer towing vehicles(STTVs) which met China Emission Standard IV and V were tested using Portable Emission Measurement System(PEMS) in northern China.Emission characteristics of these vehicles under real driving conditions were analyzed and proved that on-road emissions of heavy-duty vehicles(HDVs) were underestimated in the past.There were large differences among LNG and diesel vehicles, which also existed between China V vehicles and China IV vehicles.Emission factors showed the highest level under real driving conditions, which probably be caused by frequent acceleration, deceleration, and start-stop.NOx emission factors ranged from 2.855 to 20.939 g/km based on distance-traveled and 6.719–90.557 g/kg based on fuel consumption during whole tests, which were much higher than previous researches on chassis dynamometer.It was inferred from tests that the fuel consumption rate of the test vehicles had a strong correlation with NOx emission, and the exhaust temperature also affected the efficiency of Selected Catalytic Reduction(SCR) aftertreatment system, thus changing the NOx emission greatly.THC emission factors of LNG vehicles were 2.012–10.636 g/km, which were much higher than that of diesel vehicles(0.029–0.185 g/km).Unburned CH_4 may be an important reason for this phenomenon.Further on-road emission tests, especially CH_4 emission test should be carried out in subsequent research.In addition, the Particulate Number(PN) emission factors of diesel vehicles were at a very high level during whole tests, and Diesel Particulate Filter(DPF)should be installed to reduce PN emission.  相似文献   
28.
Glycine(Gly) is ubiquitous in the atmosphere and plays a vital role in new particle formation(NPF).However,the potential mechanism of its on sulfuric acid(SA)-ammonia(A)clusters formation under various atmospheric conditions is still ambiguous.Herein,a(Gly)_x·(SA)_y·(A)_z(z≤x+y≤3) multicomponent system was investigated by using density functional theory(DFT) combined with Atmospheric Cluster Dynamics Code(ACDC) at different temperatures and precursor concentrations.The results show that Gly,with one carboxyl(-COOH) and one amine(-NH_2) group,can interact strongly with SA and A in two directions through hydrogen bonds or proton transfer.Within the relevant range of atmospheric concentrations,Gly can enhance the formation rate of SA-A-based clusters,especially at low temperature,low [SA],and median [A].The enhancement(R) of Gly on NPF can be up to 340 at T=218.15 K,[SA]=10~4,[A]=10~9,and [Gly]=10~7 molecules/cm~3.In addition,the main growth paths of clusters show that Gly molecules participate into cluster formation in the initial stage and eventually leave the cluster by evaporation in subsequent cluster growth at low [Gly],it acts as an important "transporter" to connect the smaller and larger cluster.With the increase of [Gly],it acts as a "participator" directly participating in NPF.  相似文献   
29.
Five biochars derived from lotus seedpod(LSP) were applied to examine and compare the adsorption capacity of 17β-estradiol(E2) from aqueous solution.The effect of KOH activation and the order of activation steps on material properties were discussed.The effect of contact time,initial concentration,p H,ionic strength and humic acid on E2 adsorption were investigated in a batch adsorption process.Experimental results demonstrated that the pseudo second-order model fitted the experimental data best and that adsorption equilibrium was reached within 20 hr.The efficiency of E2 removal increased with increasing E2 concentration and decreased with the increase of ionic strength.E2 adsorption on LSP-derived biochar(BCs) was influenced little by humic acid,and slightly affected by the solution p H when its value ranged from 4.0 to 9.0,but considerably affected at p H 10.0.Low environmental temperature is favorable for E2 adsorption.Chemisorption,π–π interactions,monolayer adsorption and electrostatic interaction are the possible adsorption mechanisms.Comparative studies indicated that KOH activation and the order of activation steps had significant impacts on the material.Post-treated biochar exhibited better adsorption capacity for E2 than direct treated,pretreated,and raw LSP biochar.Pyrolyzed biochar at higher temperature improved E2 removal.The excellent performance of BCs in removing E2 suggested that BCs have potential in E2 treatment and that the biochar directly treated by KOH would be a good choice for the treatment of E2 in aqueous solution,with its advantages of good efficiency and simple technology.  相似文献   
30.
Cake layer formation is inevitable over time for ultrafiltration (UF) membrane-based drinking water treatment. Although the cake layer is always considered to cause membrane fouling, it can also act as a “dynamic protection layer”, as it further adsorbs pollutants and dramatically reduces their chance of getting to the membrane surface. Here, the UF membrane fouling performance was investigated with pre-deposited loose flocs in the presence of humic acid (HA). The results showed that the floc dynamic protection layer played an important role in removing HA. The higher the solution pH, the more negative the floc charge, resulting in lower HA removal efficiency due to the electrostatic repulsion and large pore size of the floc layer. With decreasing solution pH, a positively charged floc dynamic protection layer was formed, and more HA molecules were adsorbed. The potential reasons were ascribed to the smaller floc size, greater positive charge, and higher roughness of the floc layer. However, similar membrane fouling performance was also observed for the negative and positive floc dynamic protection layers due to their strong looseness characteristics. In addition, the molecular weight (MW) distribution of HA also played an important role in UF membrane fouling behavior. For the small MW HA molecules, the chance of forming a loose cake layer was high with a negatively charged floc dynamic protection layer, while for the large MW HA molecules it was high with a positively charged floc dynamic protection layer. As a result, slight UF membrane fouling was induced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号