To meet the challenges posed by global arsenic water contamination, the MgAlMn-LDHs with extraordinary efficiency of arsenate removal was developed. In order to clarify the enhancement effect of the doped-Mn on the arsenate removal performance of the LDHs, the cluster models of the MgAlMn-LDHs and MgAl-LDHs were established and calculated by using density functional theory (DFT). The results shown that the doped-Mn can significantly change the electronic structure of the LDHs and improve its chemical activity. Compared with the MgAl-LDHs that without the doped-Mn, the HOMO-LUMO gap was smaller after doping. In addition, the -OH and Al on the laminates were also activated to improve the adsorption property of the LDHs. Besides, the doped-Mn existed as a novel active site. On the other hand, the MgAlMn-LDHs with the doped-Mn, the increased of the binding energy, as well as the decreased of the ion exchange energy of interlayer Cl−, making the ability to arsenate removal had been considerably elevated than the MgAl-LDHs. Furthermore, there is an obvious coordination covalent bond between arsenate and the laminates of the MgAlMn-LDHs that with the doped-Mn. 相似文献
The microbial reduction of U(VI) by Bacillus sp. dwc-2, isolated from soil in Southwest China, was explored using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES). Our studies indicated that approximately 16.0% of U(VI) at an initial concentration of 100 mg/L uranium nitrate could be reduced by Bacillus sp. dwc-2 at pH 8.2 under anaerobic conditions at room temperature. Additionally, natural organic matter (NOM) played an important role in enhancing the bioreduction of U(VI) by Bacillus sp. dwc-2. XPS results demonstrated that the uranium presented mixed valence states (U(VI) and U(IV)) after bioreduction, which was subsequently confirmed by XANES. Furthermore, the TEM and high resolution transmission electron microscopy (HRTEM) analysis suggested that the reduced uranium was bioaccumulated mainly within the cell and as a crystalline structure on the cell wall. These observations implied that the reduction of uranium may have a significant effect on its fate in the soil environment in which these bacterial strains occur. 相似文献
Conflicts between local people's livelihoods and conservation have led to many unsuccessful conservation efforts and have stimulated debates on policies that might simultaneously promote sustainable management of protected areas and improve the living conditions of local people. Many government‐sponsored payments‐for‐ecosystem‐services (PES) schemes have been implemented around the world. However, few empirical assessments of their effectiveness have been conducted, and even fewer assessments have directly measured their effects on ecosystem services. We conducted an empirical and spatially explicit assessment of the conservation effectiveness of one of the world's largest PES programs through the use of a long‐term empirical data set, a satellite‐based habitat model, and spatial autoregressive analyses on direct measures of change in an ecosystem service (i.e., the provision of wildlife species habitat). Giant panda (Ailuropoda melanoleuca) habitat improved in Wolong Nature Reserve of China after the implementation of the Natural Forest Conservation Program. The improvement was more pronounced in areas monitored by local residents than those monitored by the local government, but only when a higher payment was provided. Our results suggest that the effectiveness of a PES program depends on who receives the payment and on whether the payment provides sufficient incentives. As engagement of local residents has not been incorporated in many conservation strategies elsewhere in China or around the world, our results also suggest that using an incentive‐based strategy as a complement to command‐and‐control, community‐ and norm‐based strategies may help achieve greater conservation effectiveness and provide a potential solution for the park versus people conflict. 相似文献
Environmental Science and Pollution Research - In the face of the global haze crisis, exploring the driving force of political factors for controlling minute atmospheric particles has become... 相似文献
Environmental Science and Pollution Research - In this study, the degradation performance of nutrients in zeolite trickling filter (ZTF) with different influent C/N ratios and aeration conditions... 相似文献
Nanoplastics are widely distributed in freshwater environments, but few studies have addressed their effects on freshwater algae, especially on harmful algae. In this study, the effects of polystyrene (PS) nanoplastics on Microcystis aeruginosa (M. aeruginosa) growth, as well as microcystin (MC) production and release, were investigated over the whole growth period. The results show that PS nanoplastics caused a dose-dependent inhibitory effect on M. aeruginosa growth and a dose-dependent increase in the aggregation rate peaking at 60.16% and 46.34%, respectively, when the PS nanoplastic concentration was 100 mg/L. This caused significant growth of M. aeruginosa with a specific growth rate up to 0.41 d?1 (50 mg/L PS nanoplastics). After a brief period of rapid growth, the tested algal cells steadily grew. In addition, the increase in PS nanoplastics concentration promoted the production and release of MC. When the PS nanoplastic concentration was 100 mg/L, the content of the intracellular (intra-) and extracellular (extra-) MC increased to 199.1 and 166.5 μg/L, respectively, on day 26, which was 31.4% and 31.1% higher, respectively, than the control. Our results provide insights into the action mechanism of nanoplastics on harmful algae and the potential risks to freshwater environments.