首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
环保管理   8篇
综合类   1篇
基础理论   9篇
污染及防治   5篇
评价与监测   1篇
  2022年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   4篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1985年   1篇
  1973年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
11.
Arctic marine mammals (AMMs) are icons of climate change, largely because of their close association with sea ice. However, neither a circumpolar assessment of AMM status nor a standardized metric of sea ice habitat change is available. We summarized available data on abundance and trend for each AMM species and recognized subpopulation. We also examined species diversity, the extent of human use, and temporal trends in sea ice habitat for 12 regions of the Arctic by calculating the dates of spring sea ice retreat and fall sea ice advance from satellite data (1979–2013). Estimates of AMM abundance varied greatly in quality, and few studies were long enough for trend analysis. Of the AMM subpopulations, 78% (61 of 78) are legally harvested for subsistence purposes. Changes in sea ice phenology have been profound. In all regions except the Bering Sea, the duration of the summer (i.e., reduced ice) period increased by 5–10 weeks and by >20 weeks in the Barents Sea between 1979 and 2013. In light of generally poor data, the importance of human use, and forecasted environmental changes in the 21st century, we recommend the following for effective AMM conservation: maintain and improve comanagement by local, federal, and international partners; recognize spatial and temporal variability in AMM subpopulation response to climate change; implement monitoring programs with clear goals; mitigate cumulative impacts of increased human activity; and recognize the limits of current protected species legislation.  相似文献   
12.
The dispersion of pollutants from the huge Buncefield oil depot fire that occurred on 11 December 2005 is simulated using a regional Eulerian chemistry-transport model. We analyse the transport and mixing of the fire plume. We show that the hot plume never reached the ground. Instead, it pierced the thin wintertime boundary layer and was injected into the free troposphere at higher altitudes. This is in agreement with data from many air quality stations. This high injection was fortunate because the fine aerosol particles (PM10) mass column generated by the fire smoke exceeded that of ordinary pollution by an order of magnitude. Our regional chemistry-transport modelling is able to predict the early development of the plume dispersion, as shown by a qualitative comparison between simulated PM10 columns and a satellite image obtained by the EOS-TERRA-MODIS sensor.If the accident had occurred in summer when boundary layers are much deeper and convective, a severe degradation in air quality due to PM10 could have occurred, as shown by a sensitivity simulation assuming a similar fire during one of the hottest days of August 2003. The modelled impact of the fire on regional and European air quality levels strongly depends on the altitude reached by the buoyant plume, as shown by a set of sensitivity simulations with variable injection heights. However, in all cases we found that the fire only affected surface aerosol concentrations without increasing photochemical pollution.  相似文献   
13.
14.
15.
The release of engineered nanomaterials (ENMs) into the biosphere will increase as industries find new and useful ways to utilize these materials. Scientists and engineers are beginning to assess the material properties that determine the fate, transport, and effects of ENMs; however, the potential impacts of released ENMs on organisms, ecosystems, and human health remain largely unknown. This special collection of four review papers and four technical papers identifies many key and emerging knowledge gaps regarding the interactions between nanomaterials and ecosystems. These critical knowledge gaps include the form, route, and mass of nanomaterials entering the environment; the transformations and ultimate fate of nanomaterials in the environment; the transport, distribution, and bioavailability of nanomaterials in environmental media; and the organismal responses to nanomaterial exposure and effects of nanomaterial inputs, on ecological communities and biogeochemical processes at relevant environmental concentrations and forms. This introductory section summarizes the state of knowledge and emerging areas of research needs identified within the special collection. Despite recent progress in understanding the transport, transformations, and fate of ENMs in model environments and organisms, there remains a large need for fundamental information regarding releases, distribution, transformations and persistence, and bioavailability of nanomaterials. Moreover, fate, transport, bioaccumulation, and ecological impacts research is needed using environmentally relevant concentrations and forms of ENMs in real field materials and with a broader range of organisms.  相似文献   
16.
17.
Closing the Gulf between Botanists and Conservationists   总被引:1,自引:0,他引:1  
  相似文献   
18.
Abstract

This study demonstrates that the growth of S. typhimurium in Luria Bertani broth supplemented with acetate, propionate, butyrate, or a mixture of the three SCFA, affected cell‐association and the ability to invade cultured HEp‐2 cells. Cell‐association and invasion was determined after growth for 4 h of growth in the presence of the SCFA at pH 6 and 7. The results suggest that the growth rate of the culture may have affected cell‐association and invasion since accompanying the significant decrease in growth rate in the presence of SCFA at pH 6 was a decrease in cell‐association and invasion. However, the results also suggest that the individual SCFA may play a role in modulating cell‐association and the invasion phenotype and the regulation of cell‐association and invasion by the SCFA was dependent on the concentration and the pH of the medium. Although the growth rates were similar for S. typhimurium in the SCFA mixture, butyrate (100 mM) and propionate (50 mM) at pH 6, differences in cell‐association and invasion were observed among these cultures. Also, at pH 7, differences were observed among the SCFA treatments even though the growth rates were similar.  相似文献   
19.
Unique forms of manufactured nanomaterials, nanoparticles, and their suspensions are rapidly being created by manipulating properties such as shape, size, structure, and chemical composition and through incorporation of surface coatings. Although these properties make nanomaterial development interesting for new applications, they also challenge the ability of colloid science to understand nanoparticle aggregation in the environment and the subsequent effects on nanomaterial transport and reactivity. This review briefly covers aggregation theory focusing on Derjaguin-Landau-Verwey-Overbeak (DLVO)-based models most commonly used to describe the thermodynamic interactions between two particles in a suspension. A discussion of the challenges to DLVO posed by the properties of nanomaterials follows, along with examples from the literature. Examples from the literature highlighting the importance ofaggregation effects on transport and reactivity and risk of nanoparticles in the environment are discussed.  相似文献   
20.
Methane (CH) and ammonia (NH3) are emitted to the atmosphere during anaerobic processing of organic matter, and both gases have detrimental environmental effects. Methane conversion to biofuel production has been suggested to reduce CH4 emissions from animal manure processing systems. The purpose of this research is to evaluate the change in CH4 and NH3 emissions in an animal feeding operation due to biofuel production from the animal manure. Gas emissions were measured from swine farms differing only in their manure-management treatment systems (conventional vs. biofuel). By removing organic matter (i.e., carbon) from the biofuel farms' manure-processing lagoons, average annual CH4 emissions were decreased by 47% compared with the conventional farm. This represents a net 44% decrease in global warming potential (CO2 equivalent) by gases emitted from the biofuel farms compared with conventional farms. However, because of the reduction of methanogenesis and its reduced effect on the chemical conversion of ammonium (NH4+) to dinitrogen (N2) gas, NH3 emissions in the biofuel farms increased by 46% over the conventional farms. These studies show that what is considered an environmentally friendly technology had mixed results and that all components of a system should be studied when making changes to existing systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号