首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   1篇
安全科学   2篇
废物处理   8篇
环保管理   13篇
综合类   36篇
基础理论   25篇
污染及防治   53篇
评价与监测   8篇
社会与环境   9篇
  2022年   8篇
  2021年   2篇
  2020年   2篇
  2018年   7篇
  2017年   8篇
  2016年   10篇
  2015年   5篇
  2014年   11篇
  2013年   12篇
  2012年   15篇
  2011年   14篇
  2010年   12篇
  2009年   4篇
  2008年   7篇
  2007年   12篇
  2006年   6篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1994年   2篇
  1991年   1篇
  1989年   1篇
  1981年   1篇
排序方式: 共有154条查询结果,搜索用时 15 毫秒
11.
12.
Nowadays many chemical industries are SMEs where multi-purpose batch or semi-batch reactors are commonly used. Vent sizing for realistic runaway scenario is not an easy task for such enterprises since they have usually few resources and use multi-purpose reactors with fast process turnovers. As a consequence these batch and semi-batch reactors are usually equipped with emergency relief systems sized once forever when the reactor is designed. This can lead to a large underestimation of the vent area in case of runaway reactions occurring when processes different from the ones considered for originally sizing the vent are carried out.The approach proposed in this work aims to identify the maximum reactor load leading to safe conditions even in case of runaway phenomena to be handled with the emergency relief system already installed (or even with a smaller vent area). This approach allows avoiding the change of the emergency relief system with a larger vent area (as required every time a new more hazardous process has to be carried out on existing reactors) at the price of lower plant productivity.  相似文献   
13.
The coastal aquifer of Rome is hosted in the Tiber River Delta depositional sequence, in a densely populated area, which was reclaimed at the end of the 19th century. Moderate salinization processes characterize this aquifer. Hydrogeological and hydrochemical surveys were carried out in October 2012 and February 2013 in the southern sector of the Delta. Hydrogeological surveys updated knowledge of groundwater morphology and a detailed conceptual hydrogeological model of the coastal aquifer was realized. Hydrochemical analyses helped to identify the salinization spatial distribution and to specify the main groundwater types. The most salinized water was not detected close to the coastline, where seawater intrusion processes would be expected, but in the inner areas. Moreover, the salinization processes resulted to be slightly marked. Results so far suggest that the source of salinization may be related more to a combination of land use and historical development of the Tiber River Delta, rather than to seawater.  相似文献   
14.
Coastal areas of Iran are heavily affected by urbanisation, industrialisation, and maritime activities. One consequence of this environmental pressure is the contaminants accumulation, as heavy metals, into the marine ecosystem. In this review, the coastal areas in the north and south of the country were assessed for lead (Pb) contamination of, one of the most toxic metals found in the environment. All studies conducted during 2006–2016 with at least 10 specimens that reported the mean and standard deviation of Pb were considered in this review. Heterogeneity between studies was assessed using the Q and I2 statistics. The Pb mean concentration overall studies was estimated to be 21.88?µg/g (95% CIs: 16.25–27.50). Random effect model showed no statistical difference in mean Pb concentration levels between south and north coasts. However, the variability in Pb mean concentrations within southern coasts was considerable and statistically significant. Moreover, the Pb concentrations in the northern coasts of Persian Gulf and Oman Sea, in south of Iran, decreased in the following order Hormozgan > Khuzestan > Sistan-VA-Balluchestan > Bushehr while in the southern coasts of Caspian Sea, in north of Iran, decreased in the order Guilan > Mazandaran > Golestan.  相似文献   
15.
The recovery of ferrous and non ferrous metals from the bottom ashes is a common practice in the most part of Europe, both for the environmental advantages of their recycle and to avoid problems of swelling and expansion that metals can cause when bottom ashes are reused in concrete production or in road construction. This paper focuses on metal recovery from bottom ashes produced in Municipal Solid Waste (MSW) incinerators, with a particular focus on aluminium. A forecasting model was developed in order to evaluate the quantity of aluminium scraps recoverable from the bottom ashes. The model was applied to the Italian situation but its validity can be extended to other countries. Focusing on Italy, by applying conventional technologies for the separation of non-ferrous metals, the amount of aluminium potentially recoverable from bottom ashes is estimated in the range from 16,500 to 21,000 tonnes at the year 2015, and from 19,000 to 28,500 tonnes at 2020.  相似文献   
16.
Environmental Science and Pollution Research - Phytoremediation represents a natural method to remove contaminants from soil. The goal of this study was to investigate the potential of...  相似文献   
17.
Environmental Science and Pollution Research - The increased titanium dioxide nanoparticles (TiO2-NPs) spread and their interaction with organic and inorganic pollutants arouses concern for the...  相似文献   
18.
This study presents an integrated hydrologic–economic model as decision support system for groundwater use and incorporates uncertainties of climate change. The model was developed with the Vensim software (Ventana Systems) for system dynamic simulations. The software permitted the integration of economic variables along with hydrologic variables, in a unified format with the aim of evaluating the economic impacts of climate change on arid environments. To test the model, we applied it in one of the upper Tunuyán River sub-basin, located in the Mendoza Province (Argentina), where irrigation comes from groundwater. The model defines the best mix of crops and the total land use required to maximize the total river sub-basin monetary income, considering as a limit the amount of water that does not exceed the natural annual aquifer recharge. To estimate the impacts of climatic changes, four scenarios were compared: the business as usual (with the number of existing wells) in a dry year with a temperature increase of 4 °C; the business as usual in a wet year with an increase in temperature of 1.1 °C; an efficient use of wells in a dry year and a temperature increase of 4 °C and an efficient use of wells in a wet year with a temperature increase of 1.1 °C. Outputs calculated by the model were: land use per crop, total sub-basin net benefit, total sub-basin water extraction, water extraction limit depending on river discharge and total number of wells required to irrigate the entire area. Preliminary results showed that the number of existing wells exceeded the optimized number of wells required to sustainably irrigate the entire river sub-basin. Results indicated that in an average river discharge year, if wells were efficiently used, further rural development would be possible, until the limit of 350 million m3 of water extraction per year was reached (650 million m3 for a wet year and 180 million m3 for a dry year). The unified format and the low cost of the software license make the model a useful tool for Water Resources Management Institutions, particularly in developing countries.  相似文献   
19.
This investigation was under taken to evaluate the groundwater resources contamination due to intensive agricultural practices (particularly greenhouses). The study-area is located in the coastal area of the Ragusa province (South-East Sicily), where numerous existing greenhouses may cause the contamination of groundwater systems (unconfined and confined aquifers) beneath the cropped land. The pollution risk is mainly related with the seepage process of macro-elements nitrogen (N), phosphorus (P), potassium (K), held in the irrigation water and the massive use of fertilizers and pesticides, that may pass through the unsaturated zone of the soil profile. Moreover, the area is characterized by the presence of several wells (about 15 wells/km2) for agricultural use that cause the aquifer overexploitation and the consequent risk of seawater intrusion. The agriculture practices adopted in the study area (irrigation volumes, fertilizer concentrations, use of pesticides…) were monitored since February 2009; moreover, the pollution risk of the aquifers was evaluated through the analysis of groundwater water samples collected (monthly) in the monitoring wells; in particular, nitrogen compounds, soluble phosphorous (PO?2?), potassium, as well as the main pesticides commonly used in the study area, were measured.The results show that electrical conductivity and chloride concentration values can cause reduction of production and leaf damage problems, respectively, for most of the monitored farm systems. The high nitrogen compounds concentrations observed in the monitored wells can cause health and environmental problems. Moreover high pesticide contamination of groundwater was found in two of the five monitored wells.  相似文献   
20.
Different degradation methods have been applied to assess the suitability of advanced oxidation process (AOPs) to promote mineralization of imazethapyr [(RS)-5-ethyl-2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)nicotinic acid], a widely used imidazolinone class herbicide, the persistence of which has been demonstrated in surface and ground waters destined to human uses. Independent of the oxidation process assessed, the decomposition of imazethapyr always followed a pseudo-first order kinetic. The direct UV-irradiation (UV) of the herbicide as well as its oxidation with ozone (O?), and hydrogen peroxide tied to UV-irradiation (H?O?/UV) were sufficiently slow to permit the identification of intermediate products, the formation pathway of which has been proposed. Ozonation joined to UV-irradiation (O?/UV), ozonation joined to titanium dioxide photo-catalysis (TiO?/UV+O?), sole photo-catalysis (TiO?/UV), and photo-catalysis reinforced with hydrogen peroxide-oxidation (TiO?/UV+H?O?) were characterized by a faster degradation and rapid formation of a lot of small molecules, which were quickly degraded to complete mineralization. The most effective oxidation methods were those using titanium dioxide photo-catalysis enhanced either by ozonation or hydrogen peroxide. Most of all, these last processes were useful to avoid the development of dangerous by-products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号