首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1203篇
  免费   20篇
  国内免费   11篇
安全科学   68篇
废物处理   75篇
环保管理   292篇
综合类   126篇
基础理论   221篇
环境理论   2篇
污染及防治   296篇
评价与监测   98篇
社会与环境   39篇
灾害及防治   17篇
  2023年   9篇
  2022年   7篇
  2021年   9篇
  2020年   16篇
  2019年   16篇
  2018年   20篇
  2017年   18篇
  2016年   22篇
  2015年   20篇
  2014年   26篇
  2013年   134篇
  2012年   40篇
  2011年   56篇
  2010年   53篇
  2009年   50篇
  2008年   59篇
  2007年   66篇
  2006年   68篇
  2005年   48篇
  2004年   33篇
  2003年   53篇
  2002年   46篇
  2001年   19篇
  2000年   14篇
  1999年   19篇
  1998年   21篇
  1997年   10篇
  1996年   11篇
  1995年   23篇
  1994年   12篇
  1993年   10篇
  1992年   15篇
  1991年   13篇
  1990年   17篇
  1989年   13篇
  1988年   9篇
  1987年   8篇
  1986年   8篇
  1985年   15篇
  1984年   11篇
  1983年   14篇
  1982年   19篇
  1981年   24篇
  1980年   10篇
  1979年   13篇
  1975年   4篇
  1974年   4篇
  1973年   8篇
  1972年   4篇
  1971年   4篇
排序方式: 共有1234条查询结果,搜索用时 515 毫秒
421.
Doroth&#;e Ehrich  Niels M. Schmidt  Gilles Gauthier  Ray Alisauskas  Anders Angerbj&#;rn  Karin Clark  Frauke Ecke  Nina E. Eide  Erik Framstad  Jay Frandsen  Alastair Franke  Olivier Gilg  Marie-Andr&#;e Giroux  Heikki Henttonen  Birger H&#;rnfeldt  Rolf A. Ims  Gennadiy D. Kataev  Sergey P. Kharitonov  Siw T. Killengreen  Charles J. Krebs  Richard B. Lanctot  Nicolas Lecomte  Irina E. Menyushina  Douglas W. Morris  Guy Morrisson  Lauri Oksanen  Tarja Oksanen  Johan Olofsson  Ivan G. Pokrovsky  Igor Yu. Popov  Donald Reid  James D. Roth  Sarah T. Saalfeld  Gustaf Samelius  Benoit Sittler  Sergey M. Sleptsov  Paul A. Smith  Aleksandr A. Sokolov  Natalya A. Sokolova  Mikhail Y. Soloviev  Diana V. Solovyeva 《Ambio》2020,49(3):786-800
Lemmings are a key component of tundra food webs and changes in their dynamics can affect the whole ecosystem. We present a comprehensive overview of lemming monitoring and research activities, and assess recent trends in lemming abundance across the circumpolar Arctic. Since 2000, lemmings have been monitored at 49 sites of which 38 are still active. The sites were not evenly distributed with notably Russia and high Arctic Canada underrepresented. Abundance was monitored at all sites, but methods and levels of precision varied greatly. Other important attributes such as health, genetic diversity and potential drivers of population change, were often not monitored. There was no evidence that lemming populations were decreasing in general, although a negative trend was detected for low arctic populations sympatric with voles. To keep the pace of arctic change, we recommend maintaining long-term programmes while harmonizing methods, improving spatial coverage and integrating an ecosystem perspective.  相似文献   
422.
Semivolatile organic compounds (SVOCs) are a major class of indoor pollutants. Understanding SVOC partitioning between the gas phase and settled dust is important for characterizing the fate of these species indoors and the pathways by which humans are exposed to them. Such knowledge also helps in crafting measurement programs for epidemiological studies designed to probe potential associations between exposure to these compounds and adverse health effects. In this paper, we analyze published data from nineteen studies that cumulatively report measurements of dustborne and airborne SVOCs in more than a thousand buildings, mostly residences, in seven countries. In aggregate, measured median data are reported in these studies for 66 different SVOCs whose octanol-air partition coefficients (Koa) span more than five orders of magnitude. We use these data to test a simple equilibrium model for estimating the partitioning of an SVOC between the gas phase and settled dust indoors. The results demonstrate, in central tendency, that a compound’s octanol-air partition coefficient is a strong predictor of its abundance in settled dust relative to its gas phase concentration. Using median measured results for each SVOC in each study, dustborne mass fractions predicted using Koa and gas-phase concentrations correlate reasonably well with measured dustborne mass fractions (R2 = 0.76). Combined with theoretical understanding of SVOC partitioning kinetics, the empirical evidence also suggests that for SVOCs with high Koa values, the mass fraction in settled dust may not have sufficient time to equilibrate with the gas phase concentration.  相似文献   
423.
Aerosol mass spectrometer (AMS) measurements are used to characterize the evolution of exhaust particulate matter (PM) properties near and downwind of vehicle sources. The AMS provides time-resolved chemically speciated mass loadings and mass-weighted size distributions of nonrefractory PM smaller than 1 microm (NRPM1). Source measurements of aircraft PM show that black carbon particles inhibit nucleation by serving as condensation sinks for the volatile and semi-volatile exhaust gases. Real-world source measurements of ground vehicle PM are obtained by deploying an AMS aboard a mobile laboratory. Characteristic features of the exhaust PM chemical composition and size distribution are discussed. PM mass and number concentrations are used with above-background gas-phase carbon dioxide (CO2) concentrations to calculate on-road emission factors for individual vehicles. Highly variable ratios between particle number and mass concentrations are observed for individual vehicles. NRPM1 mass emission factors measured for on-road diesel vehicles are approximately 50% lower than those from dynamometer studies. Factor analysis of AMS data (FA-AMS) is applied for the first time to map variations in exhaust PM mass downwind of a highway. In this study, above-background vehicle PM concentrations are highest close to the highway and decrease by a factor of 2 by 200 m away from the highway. Comparison with the gas-phase CO2 concentrations indicates that these vehicle PM mass gradients are largely driven by dilution. Secondary aerosol species do not show a similar gradient in absolute mass concentrations; thus, their relative contribution to total ambient PM mass concentrations increases as a function of distance from the highway. FA-AMS of single particle and ensemble data at an urban receptor site shows that condensation of these secondary aerosol species onto vehicle exhaust particles results in spatial and temporal evolution of the size and composition of vehicle exhaust PM on urban and regional scales.  相似文献   
424.
This paper reports on a major study of the incidence of indicator organisms and pathogens found within Class B biosolids within 21 samplings from 18 wastewater treatment plants across the United States. This is the first major study of its kind since the promulgation of the USEPA Part 503 Rule in 1993, and includes samples before and after the Part 503 Rule was promulgated. National distributions collected between 2005 and 2008 show that the incidence of bacterial and viral pathogens in Class B mesophilic, anaerobically digested biosolids were generally low with the exception of adenoviruses, which were more prevalent than enteric viruses. No Ascaris ova were detected in any sample. In contrast, indicator organism numbers were uniformly high, regardless of whether they were bacteria (fecal coliforms) or viruses (phage). Indicators were not correlated with pathogen loads. Historic distributions were collected between 1988 and 2006 at one location in Tucson, AZ. By comparing data collected before and after 1993, the influence of the USEPA Part 503 Rule on indicator and pathogen levels within Class B biosolids can be inferred. In general, the bacterial indicators total and fecal coliforms decreased from the 1980s to present. Enteric virus concentrations after 1993 are much lower than those reported in other studies in the 1980s, although our values from 1988 to 1993 are not significantly different from our values obtained from 1994 to 2006. Presumably this is due to better and more consistent treatment of the wastewater, illustrating that the Part 503 Rule has been effective in reducing public exposure to pathogens relative to 17 yr ago. The percent reduction of both indicators and pathogens during anaerobic mesophilic digestion was between 94 and 99% for all organisms, illustrating that such treatment is effective in reducing pathogen loads.  相似文献   
425.
Fox, James F., Charles M. Davis, and Darren K. Martin, 2010. Sediment Source Assessment in a Lowland Watershed Using Nitrogen Stable Isotopes. Journal of the American Water Resources Association (JAWRA) 46(6):1192–1204. DOI: 10.1111/j.1752-1688.2010.00485.x Abstract: Sediment sources and transported sediments were sampled in a lowland watershed with pronounced fine sediment storage in the streambed. Sediments were analyzed for carbon and nitrogen content and stable nitrogen isotopic composition. Analysis of the data shows that temporarily stored streambed sediments dominate the sediment load during moderate- and low-flow hydrologic events. Modeling of sediment transport and nitrogen elemental and isotopic mass balance was performed for the watershed for a 12-month time period using a continuous, conceptual-based model. The model results show that during moderate- and low-flow hydrologic events, the streambed is slowly downcutting. During very high-flow hydrologic events, deposition is pronounced in the streambed and sediment is replenished to the bed. Nitrogen model results show that elemental and isotopic nitrogen of streambed sediments vary substantially over the simulation period. In this manner, the streambed in a lowland watershed functions as a temporary storage zone that, in turn, can impact the nitrogen elemental and isotopic signature of sediments. The variation could significantly impact estimates of sediment provenance using nitrogen tracer-based methods. Future work should consider both hydrologic and biogeochemical control on the nitrogen isotopic signature of sediments in small lowland watersheds and streams where a significant portion of deposited fines are temporarily stored.  相似文献   
426.
427.
Atmospheric ultrafine particles (UPs or PM0.1) were investigated at the roadside of Syuefu road in Hsinchu city, in the Syueshan highway tunnel in Taipei and in the NTU Experimental Forest in Nantou, Taiwan. A SMPS (TSI 3936) and three MOUDIs (MSP 110) were collocated to determine the number and mass concentrations of the PM0.1 simultaneously. The filter samples were further analyzed for organic carbon (OC), element carbon (EC), water-soluble ions and trace elements. Taking into account the OC artifact of PM0.1, good chemical mass closure (ratio of the reconstructed chemical mass to the gravimetrical mass of PMs) was obtained with an unknown percentage of 10.6, 26.2 and 37.2% at the roadside, tunnel and forest, respectively. The unexplained mass was attributed to aerosol water in this study. The artifact at the roadside, tunnel and the forest PM0.1 mass was found to be as high as 51.6 ± 10.7%, 20.0 ± 5.4% and 85.6 ± 18.4%, respectively. Finally, the effective density of the roadside, tunnel and forest PM0.1 was calculated based on the results of chemical speciation and found to be 1.45, 1.29 and 1.22 g cm?3, respectively, which was in good agreement with that obtained by using the method of Spencer et al. (2007). Based on these results, it is foreseeable that the number concentration of the SMPS can be converted using the effective density determined by Spencer et al. (2007) for the real time measurement of the PM0.1 concentration.  相似文献   
428.
Using detailed mass balance and simple analytical models, a spreadsheet‐based application (BioBalance) was developed to equip decision makers with a predictive tool that can provide a semiquantitative projection of source‐zone concentrations and provide insight into the long‐term behavior of the associated chlorinated solvent plume. The various models were linked in a toolkit in order to predict the composite impacts of alternative source‐zone remediation technologies and downgradient attenuation processes. Key outputs of BioBalance include estimates of maximum plume size, the time frame for plume stabilization, and an assessment of the sustainability of anaerobic natural attenuation processes. The toolkit also provides spatial and temporal projections of integrated contaminant flux and plume centerline concentrations. Results from model runs of the toolkit indicate that, for sites trying to meet traditional, “final” remedial objectives (e.g., two to three orders of magnitude reduction in concentration with restoration to potable limits), “dispersive” mechanisms (e.g., heterogeneous flow and matrix diffusion) can extend remedial time frames and limit the benefits of source remediation in reducing plume sizes. In these cases, the removal of source mass does not result in a corresponding reduction in the time frame for source remediation or plume stabilization. However, this should not discourage practitioners from implementing source‐depletion technologies, since results from the toolkit demonstrate a variety of measurable benefits of source remediation. Model runs suggest that alternative, “intermediate” performance metrics can improve and clarify source remediation objectives and better monitor and evaluate effectiveness. Suggested intermediate performance metrics include reduction in overall concentrations or mass within the plume, reduction of flux moving within a plume, and reduction in the potential for risk to a receptor or migration of a target concentration of contaminant beyond a site boundary. This article describes the development of two key modules of the toolkit as well as illustrates the value of using intermediate performance metrics to evaluate the performance of a source‐remediation technology. © 2010 Wiley Periodicals, Inc.  相似文献   
429.
Due to the increasing concerns on global warming, scarce land for agriculture, and contamination impacts on human health, biochar application is being considered as one of the possible measures for carbon sequestration, promoting higher crop yield and contamination remediation. Significant amount of researches focusing on these three aspects have been conducted during recent years. Biochar as a soil amendment is effective in promoting plant performance and sustainability, by enhancing nutrient bioavailability, contaminants immobilization, and microbial activities. The features of biochar in changing soil physical and biochemical properties are essential in affecting the sustainability of an ecosystem. Most studies showed positive results and considered biochar application as an effective and promising measure for above-mentioned interests. Bio-engineered man-made filled slope and landfill slope increasingly draw the attention of geologists and geotechnical engineers. With increasing number of filled slopes, sustainability, low maintenance, and stability are the major concerns. Biochar as a soil amendment changes the key factors and parameters in ecology (plant development, soil microbial community, nutrient/contaminant cycling, etc.) and slope engineering (soil weight, internal friction angle and cohesion, etc.). This paper reviews the studies on the production, physical and biochemical properties of biochar and suggests the potential areas requiring study in balancing ecology and man-made filled slope and landfill cover engineering. Biochar-amended soil should be considered as a new type of soil in terms of soil mechanics. Biochar performance depends on soil and biochar type which imposes challenges to generalize the research outcomes. Aging process and ecotoxicity studies of biochar are strongly required.  相似文献   
430.
Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US$ 2.3 to US $7.4 billion during 2003?C2050. Our analysis identifies improved road design and agricultural sector investments as key ??no-regret?? adaptation measures, alongside intensified efforts to develop a more flexible and resilient society. Our findings also support the need for cooperative river basin management and the regional coordination of adaptation strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号