首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1508篇
  免费   57篇
  国内免费   451篇
安全科学   113篇
废物处理   93篇
环保管理   110篇
综合类   719篇
基础理论   294篇
污染及防治   536篇
评价与监测   52篇
社会与环境   40篇
灾害及防治   59篇
  2024年   1篇
  2023年   21篇
  2022年   78篇
  2021年   65篇
  2020年   35篇
  2019年   36篇
  2018年   63篇
  2017年   54篇
  2016年   65篇
  2015年   78篇
  2014年   123篇
  2013年   144篇
  2012年   112篇
  2011年   114篇
  2010年   103篇
  2009年   102篇
  2008年   110篇
  2007年   69篇
  2006年   75篇
  2005年   45篇
  2004年   54篇
  2003年   68篇
  2002年   42篇
  2001年   37篇
  2000年   42篇
  1999年   33篇
  1998年   60篇
  1997年   42篇
  1996年   24篇
  1995年   25篇
  1994年   25篇
  1993年   26篇
  1992年   18篇
  1991年   11篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1984年   2篇
排序方式: 共有2016条查询结果,搜索用时 546 毫秒
101.
Pig manure (PM) is widely used as an organic fertilizer to increase yields of crops. Excessive application of compost containing relatively great concentrations of copper (Cu) and zinc (Zn) can change soil quality. To clarify the effects of different rates of application and to determine the optimal rate of fertilization, PM containing 1,115 mg Cu kg?1, dry mass (dm) and 1,497 mg Zn kg?1, dm was applied to alkaline soil at rates of 0, 11, 22, 44, 88, and 222 g PM kg?1, dm. Phospholipid fatty acids (PLFAs) were used to assess soil microbial community composition. Application of PM resulted in greater concentrations of total nitrogen (TN), NH4 +-N, NO3 ?-N, total carbon (TC), soil organic matter (SOM) but lesser pH values. Soils with application rates of 88–222 g PM kg?1, dm had concentrations of total and EDTA-extractable Cu and Zn significantly greater than those in soil without PM, and concentrations of T-Cu and T-Zn in these amended soils exceeded maximum limits set by standards in china. Except in the soil with a rate of 11 g PM kg?1, dm, total bacterial and fungal PLFAs were directly proportional to rate of application of PM. Biomasses of bacteria and fungi were significantly greater in soils with application rates of 44–222 g PM kg?1, dm than in the soil without PM. SOM, TC and EDTA-Zn had the most direct influence on soil microbial communities. To improve fertility of soils and maintain quality of soil, rate of application should be 22–44 g PM kg?1 dm, soil containing Cu and Zn.  相似文献   
102.
The effects of three compounded curing agents on the properties and performance of the urea-formaldehyde (UF) resin were investigated in this study. The compounded curing agents were prepared by mixing ammonium chloride with hexamethylenetetramine, citric acid, and oxalic acid respectively at a ratio of 1:1, named N-H, N–CA, and N–OA, respectively. The curing process, crystallinity, and physical properties were measured, and the three-ply plywood was fabricated to measure its prepress strength, wet shear strength, and formaldehyde emission. Results showed that the compounded curing agents N–CA and N–OA enhanced the initial viscosity, crosslinking density and thermal stability of UF resin. Additionally, the prepress strength of the plywood bonded by UF resin with N–CA and N–OA increased by 82 and 111% respectively compared to the UF resin with NH4Cl, and the wet shear strength increased by 14 and 16%, the formaldehyde emission decreased by 19 and 42% respectively. However, owing to the short pot-life of these curing agent limited their storage time, the curing agents N–CA and N–OA should be applied to fabricate plywood in winter for obtaining a better bond strength and a lower formaldehyde emission. While the UF resin with N–HT showed a suitable pot-life, so it could be applied to fabricate plywood in summer for long time storage and avoiding procuring problem.  相似文献   
103.
Environmental Science and Pollution Research - Plant leaves play a key role in the accumulation of PAHs, as they are able to capture PAHs from the air. In this paper, the mechanism, including...  相似文献   
104.
为解决杨河煤业高应力软岩巷道的支护问题,对杨河煤业深部软沿巷道变形破坏特征及原因进行分析,提出支架-锚杆-围岩卸压耦合支护技术,并结合42轨道下山试验巷道对耦合卸压支护技术参数进行阐述,通过矿压观测结果可知:42轨道下山在采用卸压耦合支护技术后,有效控制了巷道强烈变形。  相似文献   
105.
Arsenic (As) is a pervasive environmental toxin and carcinogenic metalloid. It ranks at the top of the US priority List of Hazardous Substances and causes worldwide human health problems. Wetlands, including natural and artificial ecosystems (i.e. paddy soils) are highly susceptible to As enrichment; acting not only as repositories for water but a host of other elemental/chemical moieties. While macroscale processes (physical and geological) supply As to wetlands, it is the micro-scale biogeochemistry that regulates the fluxes of As and other trace elements from the semi-terrestrial to neighboring plant/aquatic/atmospheric compartments. Among these fine-scale events, microbial mediated As biotransformations contribute most to the element’s changing forms, acting as the ‘switch’ in defining a wetland as either a source or sink of As. Much of our understanding of these important microbial catalyzed reactions follows relatively recent scientific discoveries. Here we document some of these key advances, with focuses on the implications that wetlands and their microbial mediated transformation pathways have on the global As cycle, the chemistries of microbial mediated As oxidation, reduction and methylation, and future research priorities areas.
  相似文献   
106.
Nitrogen fertility and abiotic stresses management in cotton crop: a review   总被引:1,自引:0,他引:1  
This review outlines nitrogen (N) responses in crop production and potential management decisions to ameliorate abiotic stresses for better crop production. N is a primary constituent of the nucleotides and proteins that are essential for life. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment. Therefore, increasing plant N use efficiency (NUE) is important for the development of sustainable agriculture. NUE has a key role in crop yield and can be enhanced by controlling loss of fertilizers by application of humic acid and natural polymers (hydrogels), having high water-holding capacity which can improve plant performance under field conditions. Abiotic stresses such as waterlogging, drought, heat, and salinity are the major limitations for successful crop production. Therefore, integrated management approaches such as addition of aminoethoxyvinylglycine (AVG), the film antitranspirant (di-1-p-menthene and pinolene) nutrients, hydrogels, and phytohormones may provide novel approaches to improve plant tolerance against abiotic stress-induced damage. Moreover, for plant breeders and molecular biologists, it is a challenge to develop cotton cultivars that can tolerate plant abiotic stresses while having high potential NUE for the future.  相似文献   
107.
Environmental Science and Pollution Research - Phytoremediation coupled with crop rotation (PCC) is a feasible strategy for remediation of contaminated soil without interrupting crop production....  相似文献   
108.
This article develops a direct methanol fuel cell (DMFC) with a magnet-actuated bubble removal mechanism. A micro-DC motor is used to control the bubble removal mechanism. The lower magnetic device is operated to extrude a Polydimethylsiloxane (PDMS) runner to compress the liquid fuel in the anode flow channel, forcing the CO2 bubbles in the runner to flow toward the outlet end. The bubble retention in the anode flow channel is thereby improved, enhancing the cell performance. The proposed mechanism stability and performance and Polymethylmethacrylate (PMMA) runner are also discussed.  相似文献   
109.
比较了茅草添加在温度变化条件下对餐厨垃圾厌氧水解过程小分子有机酸产量的影响,提出一种新型餐厨垃圾的资源化方式。研究结果显示,餐厨垃圾在55℃条件下厌氧水解主要产物为乳酸,达到25.7g/L,其干物质转化率可以达到32.1%(gTS),而餐厨+茅草处理在同样条件下的乳酸产量为20.1g/L,干物质转化率为25.1%。温度下降为37℃后继续进行的的厌氧水解,得到的主要产物是乙酸、丙酸和丁酸,餐厨处理和餐厨+茅草处理这两者的峰值分别为6.5、2.8、8.0和6.1g/L、2.7g/L和5.9g/L。结果显示茅草添加可以在一定程度上调节水解产物的比例,而温度变化可以调控小分子有机酸的产量。本研究结果表明,厌氧水解是一种有潜力的小分子有机酸生产与餐厨垃圾资源化处理途径。  相似文献   
110.
通过对浙江省工业烟粉尘排放总量和排放源现状进行分析,提出工业烟粉尘减排治理对策,对工业烟粉尘4个重点行业(水泥制造行业、火力发电行业、钢铁行业(包括炼钢、钢压延加工和黑色金属铸造行业)、纺织染整行业(包括棉印染精加工、化纤织物染整精加工和棉织造加工行业)排放源的烟粉尘减排途径和潜力进行分析测算,研究提出工业烟粉尘总量控制措施和建议。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号