首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31158篇
  免费   348篇
  国内免费   458篇
安全科学   979篇
废物处理   1464篇
环保管理   3756篇
综合类   5288篇
基础理论   8136篇
环境理论   19篇
污染及防治   8203篇
评价与监测   2125篇
社会与环境   1810篇
灾害及防治   184篇
  2023年   137篇
  2022年   316篇
  2021年   326篇
  2020年   246篇
  2019年   290篇
  2018年   496篇
  2017年   499篇
  2016年   760篇
  2015年   588篇
  2014年   896篇
  2013年   2461篇
  2012年   1088篇
  2011年   1477篇
  2010年   1202篇
  2009年   1229篇
  2008年   1479篇
  2007年   1527篇
  2006年   1299篇
  2005年   1111篇
  2004年   1003篇
  2003年   1104篇
  2002年   978篇
  2001年   1252篇
  2000年   885篇
  1999年   534篇
  1998年   353篇
  1997年   366篇
  1996年   364篇
  1995年   432篇
  1994年   453篇
  1993年   362篇
  1992年   383篇
  1991年   357篇
  1990年   388篇
  1989年   350篇
  1988年   310篇
  1987年   284篇
  1986年   227篇
  1985年   260篇
  1984年   277篇
  1983年   259篇
  1982年   249篇
  1981年   234篇
  1980年   185篇
  1979年   210篇
  1978年   185篇
  1977年   129篇
  1975年   148篇
  1972年   133篇
  1971年   135篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Two chromium removal experiments were performed in bioreactors with and without a magnetic field under the same conditions.The release of the chromium present in the biomass was tested in two experiments one with the initial pH of the medium and one with pH 4.0.The objective was to remove Cr(Ⅵ) and total Cr from the effluent,this was carried out by placing biological treatments of synthetic effluent contaminated with 100 mg/L of Cr(Ⅵ) in a bioreactor with neodymium magnets that applied a magnetic field(intensity85.4 mT) to the mixed culture.The removal of Cr(Ⅵ) was approximately 100.0% for the bioreactor with a magnetic field and 93,3% for the bioreactor without a magnetic field for9 hr of recirculation of the synthetic effluent by the bioreactor.The removal of total Cr was61.6% and 48.4%,with and without a magnetic field,respectively;for 24 hr.The desorption of Cr(VI) in the synthetic effluent was 0.05 mg/L,which is below the limit established by Brazilian legislation(0.1 mg/L) for the discharge of effluent containing Cr(Ⅵ) into bodies of water.The results obtained for the removal of chromium in synthetic effluent suggested that there was no significant influence on the viable cell count of the mixed culture.The desorption of Cr(Ⅵ) in synthetic effluent after bioadsorption of chromium by the mixed culture in the process of removal of chromium in bioreactors with and without a magnetic field was not significant in either of the experiments with different initial pHs.  相似文献   
122.
Ozone (O3), as a harmful air pollutant, has been of wide concern. Safe, efficient, and economical O3 removal methods urgently need to be developed. Catalytic decomposition is the most promising method for O3 removal, especially at room temperature or even subzero temperatures. Great efforts have been made to develop high-efficiency catalysts for O3 decomposition that can operate at low temperatures, high space velocity and high humidity. First, this review describes the general reaction mechanism of O3 decomposition on noble metal and transition metal oxide catalysts. Then, progress on the O3 decomposition performance of various catalysts in the past 30 years is summarized in detail. The main focus is the O3 decomposition performance of manganese oxides, which are divided into supported manganese oxides and non-supported manganese oxides. Methods to improve the activity, stability, and humidity resistance of manganese oxide catalysts for O3 decomposition are also summarized. The deactivation mechanisms of manganese oxides under dry and humid conditions are discussed. The O3 decomposition performance of monolithic catalysts is also summarized from the perspective of industrial applications. Finally, the future development directions and prospects of O3 catalytic decomposition technology are put forward.  相似文献   
123.
The degradation of pharmaceutical micropollutants is an intensifying environmental problem and synthesis of efficient photocatalysts for this purpose is one of the foremost challenges worldwide. Therefore, this study was conducted to develop novel plasmonic Ag/Ag2O/BiVO4 nanocomposite photocatalysts by simple precipitation and thermal decomposition methods, which could exhibit higher photocatalytic activity for mineralized pharmaceutical micropollutants. Among the different treatments, the best performance was observed for the Ag/Ag2O/BiVO4 nanocomposites (5 wt.%; 10 min's visible light irradiation) which exhibited 6.57 times higher photodegradation rate than the pure BiVO4. Further, the effects of different influencing factors on the photodegradation system of tetracycline hydrochloride (TC-HCl) were investigated and the feasibility for its practical application was explored through the specific light sources, water source and cycle experiments. The mechanistic study demonstrated that the photogenerated holes (h+), superoxide radicals (?O2?) and hydroxyl radicals (?OH) participated in TC-HCl removal process, which is different from the pure BiVO4 reaction system. Hence, the present work can provide a new approach for the formation of novel plasmonic photocatalysts with high photoactivity and can act as effective practical application for environmental remediation.  相似文献   
124.
Eighteen polycyclic aromatic hydrocarbons (PAHs) were detected in benthos collected onboard the ‘Snow Dragon’ in the Northern Bering Sea Shelf and Chukchi Sea Shelf during the 6th Chinese National Arctic Research Expedition (CHINARE 2014). Σ18PAHs for all biota samples ranged from 34.2 to 128.1 ng/g dry weight (dw), with the highest concentration observed in fish muscle (Boreogadus saida) samples close to St. Lawrence Island. The PAH composition pattern was dominated by the presence of lighter 3 ring (57%) and 2 ring (28%) PAHs, indicating oil-related or petrogenic sources as important origins of PAH contamination. Concentrations of alkyl-PAHs (1-methylnaphthalene and 2-methylnaphthalene) were lower than their parent PAH (naphthalene) in all biological tissue, and their percentage also decreased significantly (p<0.05) compared with those in the corresponding sediment. There were no significant relationships between PAH concentrations and trophic levels, which is possibly due to the combined results of the complex benthic foodweb in the subarctic/Arctic shelf region, as well as a low assimilation/effective metabolism for PAHs. According to toxic potency evaluation results from TCDD toxic equivalents (TEQs) and BaP-equivalent (BaPE) values, whelk (Neptunea heros) and starfish (Ctenodiscus crispatus) are two macroinvertebrate species showing relatively higher dioxin-like toxicity and carcinogenic risk.  相似文献   
125.
Advanced oxidation technologies are a friendly environmental approach for the remediation of industrial wastewaters. Here, one pot synthesis of mesoporous WO_3 and WO_3-graphene oxide(GO) nanocomposites has been performed through the sol–gel method. Then, platinum(Pt) nanoparticles were deposited onto the WO_3 and WO_3-GO nanocomposite through photochemical reduction to produce mesoporous Pt/WO_3 and Pt/WO_3-GO nanocomposites. X-ray diffraction(XRD) findings exhibit a formation of monoclinic and triclinic WO_3 phases. Transmission Electron Microscope(TEM) images of Pt/WO_3-GO nanocomposites exhibited that WO_3 nanoparticles are obviously agglomerated and the particle sizes of Pt and WO_3 are ~ 10 nm and 20–50 nm, respectively. The mesoporous Pt/WO_3 and Pt/WO_3-GO nanocomposites were assessed for photocatalytic degradation of Methylene Blue(MB) as a probe molecule under visible light illumination.The findings showed that mesoporous Pt/WO_3, WO_3-GO and Pt/WO_3-GO nanocomposites exhibited much higher photocatalytic efficiencies than the pure WO_3. The photodegradation rates by mesoporous Pt/WO_3-GO nanocomposites are 3, 2 and 1.15 times greater than those by mesoporous WO_3, WO_3-GO, and Pt/WO_3, respectively. The key factors of the enhanced photocatalytic performance of Pt/WO_3-GO nanocomposites could be explained by the highly freedom electron transfer through the synergetic effect between WO_3 and GO sheets, in addition to the Pt nanoparticles that act as active sites for O2 reduction, which suppresses the electron hole pair recombination in the Pt/WO_3-GO nanocomposites.  相似文献   
126.
127.
128.
129.
Axenic tissue cultures ofRuppia maritima L. were established and propagated clonally in vitro from terminal rhizome segments collected from Tampa Bay, Florida, USA. Cultures were maintained in a base medium consisting of synthetic seawater supplemented with half-strength Murashige and Skoog salts and 1% sucrose at pH 5.6. The effects of five cytokins [6-furfurylaminopurine (kinetin), 6-benzylaminopurine (BAP), 2-isopentyladenine (2iP), 6-(4-hydroxy-3-methyl-but-2-enylamino) purine (zeatin), andn-phenyl-n-1,2,3-thidiazol-5yl urea (thidiazuron)] and one auxin [napthalene acetic acid (NAA)] on explant growth and development were investigated. Cytokinin additions resulted in a 3- to 4-fold increase in nodal production, branching, and biomass ofR. maritima after 12 wk in culture. Cultures responded in a dose-dependent manner to 2iP but exhibited broad dose-response curves to kinetin, BAP, zeatin, and thidiazuron. NAA addition resulted in increased leaf and internodal lengths, but reduced the number of leaves per node and the rhizome biomass. The addition of NAA almost completely suppressed root growth in media without cytokinins and had an antagonistic effect on nodal production and branching in cytokinin-supplemented media.  相似文献   
130.
Protein, lipid, phosphorus, and organic carbon contents, as well as electron transport system (ETS) activity, lactatedehydrogenase activity, and gut evacuation rate, were measured in four interzonal species of Pacific copepods:Calanus australis, C. pacificus, Eucalanus inermis, andE. elongatus f.hyalinus, collected at the upwelling areas off Peru (8°S) and California (27°N), and in the middle of the North Pacific (30°N), from February to April 1987. The two Eucalanidae species —E. inermis andE. elongatus — have distinctive biochemical and elemental body composition and rates of main physiological processes. Relative protein, lipid, phosphorus, and organic carbon contents (µg mg–1 wet weight) in these species were, respectively, ca. 1/7 to 1/10, 1/5 to 1/20, 1/5 to 1/10, and 1/5 those inCalanus spp. Likewise, oxygen uptake rate per unit of wet weight (based on ETS activity) inE. inermis andE. elongatus was 5 to 10% of that in calanids; a similar difference was found in phosphorus excretion rate. In addition, gut evacuation rates inE. inermis andE. elongatus were ca. one-fifth of those inCalanus spp. Based on these data, we considered the eucalanids as belonging to a distinctive physiological group, figuratively named jelly-body copepods. In contrast with calanids, active lactatedehydrogenase has been found in the bodies ofE. inermis andE. elongatus, apparently allowing them to survive for a long time in layers of extremely low oxygen content (<0.2 ml l–1). The adaptive value of physiological features in these eucalanids and typical calanids is compared.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号