首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   644篇
  免费   1篇
  国内免费   33篇
安全科学   17篇
废物处理   48篇
环保管理   63篇
综合类   57篇
基础理论   152篇
污染及防治   258篇
评价与监测   45篇
社会与环境   34篇
灾害及防治   4篇
  2023年   4篇
  2022年   34篇
  2021年   16篇
  2020年   6篇
  2019年   11篇
  2018年   39篇
  2017年   14篇
  2016年   16篇
  2015年   16篇
  2014年   17篇
  2013年   45篇
  2012年   22篇
  2011年   35篇
  2010年   20篇
  2009年   36篇
  2008年   44篇
  2007年   38篇
  2006年   34篇
  2005年   20篇
  2004年   43篇
  2003年   42篇
  2002年   16篇
  2001年   42篇
  2000年   23篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1991年   5篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1956年   1篇
排序方式: 共有678条查询结果,搜索用时 15 毫秒
521.
This greenhouse experiment evaluated arsenic removal by Pteris vittata and its effects on arsenic redistribution in soils. P. vittata grew in six arsenic-contaminated soils and its fronds were harvested and analyzed for arsenic in October, 2003, April, 2004, and October, 2004. The soil arsenic was separated into five fractions via sequential extraction. The ferns grew well and took up arsenic from all soils. Fern biomass ranged from 24.8 to 33.5 g plant(-1) after 4 months of growth but was reduced in the subsequent harvests. The frond arsenic concentrations ranged from 66 to 6,151 mg kg(-1), 110 to 3,056 mg kg(-1), and 162 to 2,139 mg kg(-1) from the first, second and third harvest, respectively. P. vittata reduced soil arsenic by 6.4-13% after three harvests. Arsenic in the soils was primarily associated with amorphous hydrous oxides (40-59%), which contributed the most to arsenic taken up by P. vittata (45-72%). It is possible to use P. vittata to remediate arsenic-contaminated soils by repeatedly harvesting its fronds.  相似文献   
522.
ABSTRACT

U.S. Environmental Protection Agency (EPA) Method 26A is the recommended procedure for capturing and speci-ating halogen (X2) and hydrogen halide (HX) stack emissions from combustion sources. Previous evaluation studies of Method 26A have focused primarily on hydrogen chloride (HCl) speciation. Capture efficiency, bias, and the potential interference of Cl2 at high levels (>20 ppm [u,g/m3]) and NH4Cl in the flue gas stream have been investigated. It has been suggested that precise Cl2 measurement and accuracy in quantifying HX or X2 using Method 26A are difficult to achieve at Cl2 concentrations <5 ppm; however, no performance data exist to support this. Coal contains low levels of Cl, in the range of 5-2000 ppmw, which results in the presence of HCl and Cl2 in the products of combustion. HCl is the predominant Cl compound formed in the high-temperature combustion process, and it persists in the gas as the products of combustion cool. Concentrations of Cl2 in coal combustion flue gas at stack temperatures typically do not exceed 5 ppm. For this research, bench-scale experiments using simulated combustion flue gas were designed to validate the ability of Method 26A to speci-ate low levels of Cl2 accurately. This paper presents the results of the bench-scale tests. The effect of various flue gas components is discussed. The results indicate that SO2 is the only component in coal combustion flue gas that has an appreciable effect on Cl2 distribution in Method 26A impingers, and that Method 26A cannot accurately speciate HCl and Cl2 in coal combustion flue gas without modification.  相似文献   
523.
Abstract

This paper presents measurements of daily sampling of fine particulate matter (PM2.5) and its major chemical components at three urban and one rural locations in North Carolina during 2002. At both urban and rural sites, the major insoluble component of PM2.5 is organic matter, and the major soluble components are sulfate (SO4 2?), ammonium (NH4 +), and nitrate (NO3 ?). NH4 + is neutralized mainly by SO4 2? rather than by NO3 ?, except in winter when SO4 2? concentration is relatively low, whereas NO3 ? concentration is high. The equivalent ratio of NH4 + to the sum of SO4 2? and NO3 ? is <1, suggesting that SO4 2?and NO3 ?are not completely neutralized by NH4 +. At both rural and urban sites, SO4 2?concentration displays a maximum in summer and a minimum in winter, whereas NO3 ?displays an opposite seasonal trend. Mass ratio of NO3 ? to SO4 2?is consistently <1 at all sites, suggesting that stationary source emissions may play an important role in PM2.5 formation in those areas. Organic carbon and elemental carbon are well correlated at three urban sites although they are poorly correlated at the agriculture site. Other than the daily samples, hourly samples were measured at one urban site. PM2.5 mass concen trations display a peak in early morning, and a second peak in late afternoon. Back trajectory analysis shows that air masses with lower PM2.5 mass content mainly originate from the marine environment or from a continental environment but with a strong subsidence from the upper troposphere. Air masses with high PM2.5 mass concentrations are largely from continental sources. Our study of fine particulate matter and its chemical composition in North Carolina provides crucial information that may be used to determine the efficacy of the new National Ambient Air Quality Standard (NAAQS) for PM fine. Moreover, the gas-to-particle conversion processes provide improved prediction of long-range transport of pollutants and air quality.  相似文献   
524.
This article focused on the performance of oil palm kernel shell (PKS) gasification using a medium-scale downdraft gasifier with a feedstock capacity of 500 kg at a temperature range of 399–700°C and at a feed rate of 177 kg/h. This article is important for evaluating the reliability of PKS gasification for commercial power generation activities from biomass. The process performance was evaluated based on the syngas calorific value (CV), syngas flow rate, and its cold gas efficiency (CGE). The syngas flow rates and CVs were measured using a gas flow meter and a gas analyzer in real time. The data obtained were then analyzed to evaluate the performance of the process. The results showed that the CGE of the process was moderately high (51%) at 681°C, with a high syngas CV (4.45–4.89 MJ/Nm3) which was ideal for gas engine applications. The PKS gasification performance increased when the reactor temperature increased. Projections were made for the CGE and the syngas CV for the PKS gasification with increased reactor temperatures and it was found that these values could be increased up to 80% and 5.2 MJ/Nm3, respectively at a reactor temperature of 900°C. In addition, the estimated power that could be generated was about 600 kWe at a maximum operation of 500 kg/h of feed rate. Based on the analysis, a medium-scale PKS gasification is observed to be a promising process for power generation from biomass due to the favorable performance of the process.  相似文献   
525.
Pesticides are used for controlling the development of various pests in agricultural crops worldwide. Despite their agricultural benefits, pesticides are often considered a serious threat to the environment because of their persistent nature and the anomalies they create. Hence removal of such pesticides from the environment is a topic of interest for the researchers nowadays. During the recent years, use of biological resources to degrade or remove pesticides has emerged as a powerful tool for their in situ degradation and remediation. Fungi are among such bioresources that have been widely characterized and applied for biodegradation and bioremediation of pesticides. This review article presents the perspectives of using fungi for biodegradation and bioremediation of pesticides in liquid and soil media. This review clearly indicates that fungal isolates are an effective bioresource to degrade different pesticides including lindane, methamidophos, endosulfan, chlorpyrifos, atrazine, cypermethrin, dieldrin, methyl parathion, heptachlor, etc. However, rate of fungal degradation of pesticides depends on soil moisture content, nutrient availability, pH, temperature, oxygen level, etc. Fungal strains were found to harbor different processes including hydroxylation, demethylation, dechlorination, dioxygenation, esterification, dehydrochlorination, oxidation, etc during the biodegradation of different pesticides having varying functional groups. Moreover, the biodegradation of different pesticides was found to be mediated by involvement of different enzymes including laccase, hydrolase, peroxidase, esterase, dehydrogenase, manganese peroxidase, lignin peroxidase, etc. The recent advances in understanding the fungal biodegradation of pesticides focusing on the processes, pathways, genes/enzymes and factors affecting the biodegradation have also been presented in this review article.  相似文献   
526.
The UN estimated about five million deaths every year due to water-borne diseases, accounting from four billion patients. Keeping in view, the ever increasing health issues and to undermine this statistics, a reliable and sustainable water-treatment method has been developed using visible light for water treatment. titania nanoparticles (NPs) have been synthesized successfully by a more applicable method Viz: liquid impregnation (LI) method. The bacterial death rate by photocatalysis under visible light was studied by employing a typical fluorescent source and was found to follow pseudo first-order reaction kinetics. The nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy, and energy-dispersive X-ray spectroscopy to deduce their size range, surface morphology, and elemental compositions, respectively. Among all the prepared grades, 1 % Ag–TiO2 was found to be a very effective photocatalytic agent against Escherichia coli. The resulted photoinactivated data were also evaluated by different empirical kinetic models for bacterial inactivation. Hom, Hom-power, Rational, and Selleck models were not able to explain the disinfection kinetics but modified-Hom model fitted best with the experimentally obtained data by producing a shoulder, log-linear, and a tail region.  相似文献   
527.
The effects of zinc (Zn) on seed germination and growth of Moso bamboo (Phyllostachys pubescens) were investigated. Under zinc stress, the seed germination rate did not show significant difference from that of the control. Hydroponics experiments indicated that Moso bamboo had a strong ability to accumulate Zn in the shoot and it reached its maximum value in the shoot at 100 μM Zn. The root Zn concentration ranged from 2,329.29 to 8,642.51 mg kg?1, with the root Zn concentration at 10 μM Zn being 58.23 times that of the control. The root morphology parameters slightly increased at the lower Zn treatments, while growth restriction was evident at higher Zn treatments. Root ultrastructural studies revealed that the cell structure, root tips, and organelles were significantly changed under Zn stress as compared to those of the control. Some abnormalities were evident in the cell walls, vacuoles, mitochondria, plasmalemma, tonoplast, and xylem parenchyma of root cells. While Moso bamboo seems a suitable candidate for phytoremediation, its metal remediation ability should be further explored in future investigations.  相似文献   
528.
Biochars have received increasing attention in recent years because of their soil improvement potential, contaminant immobilization properties, and ability to function as carbon sinks. This study adopted a pyrolytic process to prepare a series of biochars from dried human manure at varying temperatures. The thermal analysis of human manure and physicochemical properties of the resulting biochars illustrated that human manure can be a favorable feedstock for biochar production. In particular, the porous texture and nutrient-rich properties of biochars produced from human manure and may significantly enhance soil fertility when used as used soil additives. A temperature range of 500–600 °C was optimal for human manure biochar production. Significantly, when the moisture content of the feedstock is lower than 57%, the system could not only harvest manure-derived biochar but also have a net energy output, which can be provide heat source for nearby users.  相似文献   
529.
Background concentrations of soil arsenic have been used as an alternative soil cleanup criterion in many states in the U.S. This research addresses issues related to the interpretation of background concentrations of arsenic in near pristine soils in Florida. Total arsenic was measured in 448 taxonomic and geographic representative surface soil samples using USEPA Method 3052 (HCl-HNO 3 -HF, microwave digestion) and graphite furnace atomic absorption spectrophotometry analysis procedure. Values were log-normally distributed, with geometric mean and baseline concentration (defined as 95% of the expected range of background concentrations) providing the most satisfactory statistical results. An upper baseline concentration of 6.21 mg As/kg was estimated for undisturbed soils (n=267) compared to 7.63 mg As/kg for disturbed soils (n=181). Temporal trend of total soil arsenic concentrations from 1967 to 1989 paralleled decreased usage of arsenic in U.S. agriculture. Soil arsenic background concentrations were generally higher in south Florida than in north and central Florida, and associated with wet soils. Individual high arsenic sites were scattered throughout the state, but the most highly concentrated of these occurred in the Leon-Lee belt along the Ocala uplift district extending to the southwestern flatwoods district. Extrapolation of the data using a single arsenic value regardless of the taxonomic and geographical differences in soil arsenic distribution would underestimate potential arsenic contamination in upland soils.  相似文献   
530.
Animal manures generally contain high levels of heavy metals that may pose a significant threat to soil and groundwater qualities. Pyrolysis as means of reducing metal availability in such feed stocks is recently encouraged, but systematic studies are currently lacking. The aim of this study was to assess the impact of pyrolysis temperature on the availability of Cu and Zn by chemical extraction, to determine the speciation of Cu and Zn by synchrotron-based X-ray spectroscopy, and finally to investigate the phase distribution of metal species in the carbonaceous materials by combining acid–base extractions and absorption spectroscopy data. The results showed that both Cu and Zn in the swine manure were mainly bound to organic functional groups. Cu (II) reduction and Cu (I)–S complexes were observed during the pyrolysis process. Zn species resembling ZnAc2 was still dominant, being 60.8–69.2%, and ZnS increased by 6.6–21.8% in the carbonaceous materials. The distribution of Cu and Zn in the mineral, carbonized and non-carbonized organic phases varied greatly with the pyrolysis temperature. The higher the temperature, the more the metals existed in the mineral phase and carbonized organic phase. The decrease of EDTA extractable Cu and Zn with pyrolysis temperature was due to the increase of metals in the carbonized organic phase and mineral phase. It is suggested that pyrolysis at the relatively higher temperature is a better choice for metal-containing manure according to the metal speciation, solubility and availability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号