首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   1篇
  国内免费   4篇
安全科学   3篇
废物处理   6篇
环保管理   6篇
综合类   14篇
基础理论   34篇
污染及防治   81篇
评价与监测   29篇
社会与环境   17篇
  2022年   23篇
  2021年   36篇
  2020年   3篇
  2019年   5篇
  2018年   5篇
  2017年   6篇
  2016年   9篇
  2015年   3篇
  2014年   10篇
  2013年   18篇
  2012年   2篇
  2011年   12篇
  2010年   7篇
  2009年   2篇
  2008年   6篇
  2007年   8篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   5篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1964年   1篇
  1963年   2篇
  1962年   1篇
  1961年   1篇
  1959年   2篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
111.

Rice-based cropping systems are the most energy-intensive production systems in South Asia. Sustainability of the rice-based cropping systems is nowadays questioned with declining natural resource base, soil degradation, environmental pollution, and declining factor productivity. As a consequence, the search for energy and resource conservation agro-techniques is increasing for sustainable and cleaner production. Conservation agriculture (CA) practices have been recommended for resource conservation, soil health restoration and sustaining crop productivity. The present study aimed to assess the different CA modules in rice-based cropping systems for energy conservation, energy productivity, and to define energy-economic relations. A field experiment consisted of four different tillage-based crop establishment practices (puddled-transplanted rice followed by (fb) conventional-till maize/wheat (CTTPR-CT), non-puddled transplanted rice fb zero-till maize/wheat (NPTPR-ZT), zero-till transplanted rice fb zero-till maize/wheat (ZTTPR-ZT), zero-till direct-seeded rice fb zero-till maize/wheat (ZTDSR-ZT)), with two residue management treatments (residue removal, residue retention) in rice–wheat and rice–maize rotations were evaluated for energy budgeting and energy-economic relations. Conservation-tillage treatments (NPTPR-ZT, ZTTPR-ZT, and ZTDSR-ZT) reduced the energy requirements over conventional tillage treatments, with the greater reduction in ZTTPR-ZT and ZTDSR-ZT treatments. Savings of energy in conservation-tillage treatments were attributed to reduced energy use in land preparation (69–100%) and irrigation (23–27%), which consumed a large amount of fuel energy. Conservation-tillage treatments increased grain and straw/stover yields of crops, eventually increased the output energy (6–16%), net energy (14–26%), energy ratio (25–33%), and energy productivity (23–34%) as compared with CTTPR-CT. For these energy parameters, the treatment order was ZTDSR-ZT ≥ ZTTPR-ZT > NPTPR-ZT > CTTPR-CT (p < 0.05). Crop residue retention reduced net energy, energy ratio, and energy productivity when compared with residue removal. Our results of energy-economic relations favored the “conservative hypothesis,” which envisages that energy and monetary investments are not essentially the determinants of crop productivity. Thus, zero tillage-based crop establishments (ZTTPR-ZT, ZTDSR-ZT) in rice-based production systems could be the sustainable alternative to conventional tillage-based agriculture (CTTPR-CT) as they conserved non-renewable energy sources, reduced water requirement, and increased crop productivity.

  相似文献   
112.
Environmental Science and Pollution Research - This study explores the new area of corporate social responsibility (CSR) and financial performance in the context of the fintech technology. The...  相似文献   
113.
Environmental Science and Pollution Research - This study analyzes the relationship between globalization, energy consumption, and economic growth among selected South Asian countries to promote...  相似文献   
114.
Environmental Science and Pollution Research - Recent environmental research has found that people with higher incomes and in more developed countries are more willing to pay (WTP) to protect their...  相似文献   
115.
Environmental Science and Pollution Research - Mutagens present in the environment manifest toxic effects and are considered as serious threat for human health and healthcare. Recent reports reveal...  相似文献   
116.
The genotoxicity of industrial wastewaters from Jajmau (Kanpur), was carried out by Ames Salmonella/microsome test, DNA repair-defective mutants, and Allium cepa anaphase–telophase test. Test samples showed maximum response with TA98 strain with and without metabolic activation. Amberlite resins concentrated wastewater samples were found to be more mutagenic as compared to those of liquid–liquid extracts (hexane and dichloromethane extracts). The damage in the DNA repair defective mutants in the presence of Amberlite resins concentrated water samples were found to be higher to that of liquid–liquid-extracted water samples at the dose level of 20 μl/ml culture. Among all the mutants, polA exhibited maximum decline with test samples. Mitotic index (MI) of root tip meristematic cells of A. cepa treated with 5, 10, 25, 50, and 100 % (v/v) wastewaters were significantly lower than the control. Complementary to the lower levels of MI, the wastewaters showed higher chromosomal aberration levels in all cases investigated.  相似文献   
117.
The textile industry, as recognized conformist and stake industry in the world’s economy, is facing serious environmental challenges. In numerous industries, in practice, various chemical-based processes from initial sizing to final washing are fascinating harsh environment concerns. Some of these chemicals are corrosive to equipment and cause serious damage itself. Therefore, in the twenty-first century, chemical and allied industries quest a paradigm transition from traditional chemical-based concepts to a greener, sustainable, and environmentally friendlier catalytic alternative, both at the laboratory and industrial scales. Bio-based catalysis offers numerous benefits in the context of biotechnological industry and environmental applications. In recent years, bio-based processing has received particular interest among the scientist for inter- and multi-disciplinary investigations in the areas of natural and engineering sciences for the application in biotechnology sector at large and textile industries in particular. Different enzymatic processes such as chemical substitution have been developed or in the process of development for various textile wet processes. In this context, the present review article summarizes current developments and highlights those areas where environment-friendly enzymatic textile processing might play an increasingly important role in the textile industry. In the first part of the review, a special focus has been given to a comparative discussion of the chemical-based “classical/conventional” treatments and the modern enzyme-based treatment processes. Some relevant information is also reported to identify the major research gaps to be worked out in future.  相似文献   
118.
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号