首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2409篇
  免费   49篇
  国内免费   27篇
安全科学   102篇
废物处理   96篇
环保管理   731篇
综合类   148篇
基础理论   503篇
环境理论   1篇
污染及防治   644篇
评价与监测   164篇
社会与环境   77篇
灾害及防治   19篇
  2023年   14篇
  2022年   24篇
  2021年   22篇
  2020年   26篇
  2019年   27篇
  2018年   32篇
  2017年   34篇
  2016年   49篇
  2015年   40篇
  2014年   42篇
  2013年   312篇
  2012年   77篇
  2011年   95篇
  2010年   94篇
  2009年   68篇
  2008年   104篇
  2007年   107篇
  2006年   119篇
  2005年   96篇
  2004年   71篇
  2003年   93篇
  2002年   88篇
  2001年   27篇
  2000年   41篇
  1999年   28篇
  1998年   44篇
  1997年   32篇
  1996年   35篇
  1995年   33篇
  1994年   28篇
  1993年   28篇
  1992年   27篇
  1991年   24篇
  1990年   27篇
  1989年   23篇
  1988年   31篇
  1987年   24篇
  1986年   22篇
  1985年   25篇
  1984年   43篇
  1983年   32篇
  1982年   37篇
  1981年   38篇
  1980年   26篇
  1979年   43篇
  1978年   28篇
  1977年   22篇
  1976年   19篇
  1971年   11篇
  1970年   9篇
排序方式: 共有2485条查询结果,搜索用时 171 毫秒
601.
Misidentification of animals is potentially important when naturally existing features (natural tags) such as DNA fingerprints (genetic tags) are used to identify individual animals. For example, when misidentification leads to multiple identities being assigned to an animal, traditional estimators tend to overestimate population size. Accounting for misidentification in capture–recapture models requires detailed understanding of the mechanism. Using genetic tags as an example, we outline a framework for modeling the effect of misidentification in closed population studies when individual identification is based on natural tags that are consistent over time (non-evolving natural tags). We first assume a single sample is obtained per animal for each capture event, and then generalize to the case where multiple samples (such as hair or scat samples) are collected per animal per capture occasion. We introduce methods for estimating population size and, using a simulation study, we show that our new estimators perform well for cases with moderately high capture probabilities or high misidentification rates. In contrast, conventional estimators can seriously overestimate population size when errors due to misidentification are ignored.  相似文献   
602.
603.
604.
The field measurement phase of the San Joaquin Valley Air Quality Study, which was conducted in the summer of 1990, was the largest and most sophisticated study of its kind ever conducted in this country. The San Joaquin Valley has the nation’s second worst overall air quality problem and is using the study results to conduct regional modeling to refine its control strategies. The study began in 1985 and will continue into the mid-1990s. The origins of the study, and the manner in which it is being funded and administered, reflect a unique and highly successful collaboration among several levels of government and the private sector. The temporary organizational structure formed to manage the study sets an interesting precedent for how political-level leaders can work effectively with the scientific community to conduct a long term technical study.  相似文献   
605.
Collectively, surface coating operations using paints with hydrocarbon solvents may well be the largest industrial source of volatile organic compounds (VOC) and hazardous air pollutants (HAP). Most surface coating operations involve the manual application of paint with spray equipment inside a paint spray booth. The booth exhaust system collects the solvent fumes and then exhausts them through a stack to the atmosphere. Stack emissions are characteristically high in flow rate and low in concentration. Since control equipment is sized based on exhaust flow rate rather than concentration, control of VOC and HAP requires large, expansive abatement equipment. Simple, effective designs employing recycling of air have greatly reduced the exhaust flow rate and the cost of the control equipment. However, these designs are not popular because they are burdened by various flaws, notably worker endangerment. The Mobile Zone recirculation system can be incorporated into new construction or retrofitted to existing spray booths and will reduce the exhaust volumes ranging from 65 to 95 percent without adversely affecting the production rate, production quality or worker safety.  相似文献   
606.
ABSTRACT

Lung function response to inhaled ozone at ambient air pollution levels is known to be a function of ozone concentration, exposure duration, and minute ventilation. Most data-driven exposure-response models address exposures under static condition (i.e., with a constant ozone concentration and exercise pattern). Such models are simplifications, as both ambient ozone concentrations and normal human activity patterns change with time. The purpose of this study was to develop a dynamic model of response with the advantages of a statistical model (a relatively simple structure with few parameters). A previously proposed mechanistic model for changes in specific airways resistance was adapted to describe the percent change in forced expiratory volume in one second (FEV1). This model was then reduced using the fit to three existing exposure-response data sets as criterion. The resulting model consists of a single linear differential equation together with an algebraic logistic equation. Under restricted static conditions the model reduces to a logistic model presented earlier by the authors.  相似文献   
607.
There is a concern that mismanagement of medical waste in developing countries may be a significant risk factor for disease transmission. Quantitative estimation of medical waste generation is needed to estimate the potential risk and as a basis for any waste management plan. Dhaka City, the capital of Bangladesh, is an example of a major city in a developing country where there has been no rigorous estimation of medical waste generation based upon a thorough scientific study. These estimates were obtained by stringent weighing of waste in a carefully chosen, representative, sample of HCEs, including non-residential diagnostic centres. This study used a statistically designed sampling of waste generation in a broad range of Health Care Establishments (HCEs) to indicate that the amount of waste produced in Dhaka can be estimated to be 37 ± 5 ton per day. The proportion of this waste that would be classified as hazardous waste by World Health Organisation (WHO) guidelines was found to be approximately 21%. The amount of waste, and the proportion of hazardous waste, was found to vary significantly with the size and type of HCE.  相似文献   
608.
The Van Nuys Tunnel experiment conducted in 1987 by Ingalls et al. (see A&WMA Paper 89-137.3), to verify automotive emission inventories as part of the Southern California Air Quality Study (SCAQS), gave higher CO and HC emission-rate values than expected on the basis of automotive-emission models—by factors of approximately 3 and 4, respectively. The CO/NOX and HC/NOX emission-rate ratios moreover were higher than expected—by similar factors (NOX emission rates were about as expected). The purpose of the present paper is to review the literature on dynamometer and on-road (in tunnels and along roadways) testing of in-use vehicles, and on urban-air CO/HC/NOX concentration ratios, to see whether the Van Nuys Tunnel results are reasonable in terms of previous experience. The conclusions are that (1) on-road CO and HC emissions higher than expected have been reported before, (2) on-road CO and HC emissions consistent with the Van Nuys Tunnel results have been reported before, and (3) on-road CO/NOX and HC/NOX emission-rate ratios higher than expected have been reported before. The Van Nuys Tunnel NOX results actually are lower than in other on-road experiments, and the CO/NOX and HC/NOX ratios consequently are higher. The higher-than-predicted CO/NOX and HC/NOX ratios at Van Nuys and other on-road sites suggest richer operation on-road than predicted or than observed in the inuse- vehicle dynamometer tests which serve as the model inputs. Support for these suggestions and conclusions is found in comparison of urban-air and emission-inventory HC/NOX ratios.  相似文献   
609.
Abstract

The real-time ambient mass sampler (RAMS) is a continuous monitor based on particle concentrator, denuder, drier, and tapered element oscillating microbalance (TEOM) monitor technology. It is designed to measure PM2.5 mass, including the semi-volatile species NH4NO3 and semi-volatile organic material, but not to measure PM2.5 water content. The performance of the RAMS in an urban environment with high humidity was evaluated during the July 1999 NARSTO-Northeast Oxidant and Particles Study (NEOPS) intensive study at the Baxter water treatment plant in Philadelphia, PA. The results obtained with the RAMS were compared to mass measurements made with a TEOM monitor and to constructed mass obtained with a Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) sampler designed to determine the chemical composition of fine particles, including the semi-volatile species. An average of 28% of the fine particulate material present during the study was semi-volatile organic material lost from a filter during particle collection, and 1% was NH4NO3 that was also lost from the particles during sampling. The remaining mass was dominantly nonvolatile (NH4)2SO4 (31%) and organic material (37%), with minor amounts of soot, crustal material, and nonvolatile NH4NO3. Comparison of the RAMS and PC-BOSS results indicated that the RAMS correctly monitored for fine particulate mass, including the semi-volatile material. In contrast, the heated filter of the TEOM monitor did not measure the semi-volatile material. The comparison of the RAMS and PC-BOSS data had a precision of ±4.1 μg/m3 (±9.6%). The precision of the RAMS data was limited by the uncertainty in the blank correction for the reversible adsorption of water by the charcoal-impregnated cellulose sorbent filter of the RAMS monitor. The precision of the measurement of fine par-ticulate components by the PC-BOSS was ±6-8%.  相似文献   
610.
Overfills have resulted in significant process safety incidents. Longford (Australia, 1998), Texas City (United States, 2005), and Buncefield (United Kingdom, 2005) can be traced to loss of level control leading to high level and ultimately to loss of containment. A tower at Longford and a fractionating column at Texas City were overfilled, allowing liquid to pass to downstream equipment that was not designed to receive it. The Buncefield incident occurred when a terminal tank was overfilled releasing hydrocarbons through its conservation vents.The causes of overfill are easy to identify; however, the risk analysis is complicated by the combination of manual and automated actions often necessary to control level and to respond to abnormal level events. This paper provides a brief summary of the Longford, Texas City, and Buncefield incidents from an overfill perspective and highlights 5 common factors that contributed to making these incidents possible. Fortunately, while overfill can be a complex problem, the risk reduction strategy is surprisingly simple.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号