首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13736篇
  免费   145篇
  国内免费   114篇
安全科学   365篇
废物处理   713篇
环保管理   1535篇
综合类   1621篇
基础理论   3458篇
环境理论   8篇
污染及防治   4217篇
评价与监测   1084篇
社会与环境   932篇
灾害及防治   62篇
  2023年   88篇
  2022年   217篇
  2021年   237篇
  2020年   129篇
  2019年   147篇
  2018年   291篇
  2017年   289篇
  2016年   445篇
  2015年   277篇
  2014年   456篇
  2013年   1117篇
  2012年   570篇
  2011年   739篇
  2010年   581篇
  2009年   558篇
  2008年   682篇
  2007年   712篇
  2006年   590篇
  2005年   508篇
  2004年   432篇
  2003年   456篇
  2002年   412篇
  2001年   550篇
  2000年   376篇
  1999年   219篇
  1998年   154篇
  1997年   144篇
  1996年   148篇
  1995年   180篇
  1994年   133篇
  1993年   107篇
  1992年   131篇
  1991年   122篇
  1990年   137篇
  1989年   131篇
  1988年   95篇
  1987年   88篇
  1986年   67篇
  1985年   92篇
  1984年   89篇
  1983年   86篇
  1982年   83篇
  1981年   73篇
  1980年   63篇
  1979年   69篇
  1977年   53篇
  1976年   48篇
  1975年   53篇
  1974年   51篇
  1973年   53篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
781.
Scale-up of anodic oxidation system is critical to the practical application of electrochemical treatment in bio-refractory organic wastewater treatment. In this study, the scale-up of electrochemical flow system was investigated by treating petrochemical wastewater using platinized titanium (Ti/Pt) and boron-doped diamond (BDD) anodes. It was demonstrated that flow cell was successfully scaled-up because when it was compared with batch mode (Rocha et al. 2012b), higher performances on organic matter removal were achieved. Under the suitable operating conditions and better anode material, the chemical oxygen demand (COD) of petrochemical wastewater was reduced from 2,746 to 200 mg L?1 within 5 h with an energy consumption of only 56.2 kWh m?3 in the scaled-up BDD anode system. These results demonstrate that anode flow system is very promising in practical bio-refractory organic wastewater treatment.  相似文献   
782.
Laboratory toxicity tests are a key component of the aquatic risk assessments of chemicals. Toxicity tests with Myriophyllum spicatum are conducted based on working procedures that provide detailed instructions on how to set up the experiment, e.g., which experimental design is necessary to get reproducible and thus comparable results. Approved working procedures are established by analyzing numerous toxicity tests to find a compromise between practical reasons (e.g., acceptable ranges of ambient conditions as they cannot be kept completely constant) and the ability for detecting growth alterations. However, the benefit of each step of a working procedure, e.g., the random repositioning of test beakers, cannot be exactly quantified, although this information might be useful to evaluate working procedures. In this paper, a growth model of M. spicatum was developed and used to assess the impact of temperature and light fluctuations within the standardized setup. It was analyzed how important it is to randomly reassign the location of each plant during laboratory tests to keep differences between the relative growth rates of individual plants low. Moreover, two examples are presented on how modeling can give insight into toxicity testing. Results showed that randomly repositioning of individual plants during an experiment can compensate for fluctuations of light and temperature. A method is presented on how models can be used to improve experimental designs and to quantify their benefits by predicting growth responses.  相似文献   
783.
In the present study, feasibility of recovering the coagulant from water treatment plant sludge with sulphuric acid and reusing it in post-treatment of upflow anaerobic sludge blanket (UASB) reactor effluent treating municipal wastewater were studied. The optimum conditions for coagulant recovery from water treatment plant sludge were investigated using response surface methodology (RSM). Sludge obtained from plants that use polyaluminium chloride (PACl) and alum coagulant was utilised for the study. Effect of three variables, pH, solid content and mixing time was studied using a Box–Behnken statistical experimental design. RSM model was developed based on the experimental aluminium recovery, and the response plots were developed. Results of the study showed significant effects of all the three variables and their interactions in the recovery process. The optimum aluminium recovery of 73.26 and 62.73 % from PACl sludge and alum sludge, respectively, was obtained at pH of 2.0, solid content of 0.5 % and mixing time of 30 min. The recovered coagulant solution had elevated concentrations of certain metals and chemical oxygen demand (COD) which raised concern about its reuse potential in water treatment. Hence, the coagulant recovered from PACl sludge was reused as coagulant for post-treatment of UASB reactor effluent treating municipal wastewater. The recovered coagulant gave 71 % COD, 80 % turbidity, 89 % phosphate, 77 % suspended solids and 99.5 % total coliform removal at 25 mg Al/L. Fresh PACl also gave similar performance but at higher dose of 40 mg Al/L. The results suggest that coagulant can be recovered from water treatment plant sludge and can be used to treat UASB reactor effluent treating municipal wastewater which can reduce the consumption of fresh coagulant in wastewater treatment.  相似文献   
784.
A new bioassay proposed in the patent P201300029 was applied to a pre-treated wastewater containing a mixture of commercial pesticides to simulate a recalcitrant industrial wastewater in order to determine its biodegradability. The test uses a mixture of standardized inoculum of the lyophilized bacteria Pseudomonas putida with the proper proportion of salts and minerals. The results highlight that biodegradation efficiency can be calculated using a gross parameter (chemical oxygen demand (COD)) which facilitates the biodegradability determination for routine water biodegradability analysis. The same trend was observed throughout the assay with the dehydrated and fresh inoculums, and only a difference of 5 % in biodegradation efficiency (E f) was observed. The obtained results showed that the P. putida biodegradability assay can be used as a commercial test with a lyophilized inoculum in order to monitor the ready biodegradability of an organic pollutant or a WWTP influent. Moreover, a combination of the BOD5/COD ratio and the P. putida biodegradability test is an attractive alternative in order to evaluate the biodegradability enhancement in water pre-treated with advanced oxidation processes (AOPs).  相似文献   
785.
The creation of metal parts via casting uses molds that are generally made from sand and phenolic resin. The waste generated after the casting process is called waste foundry sand (WFS). Depending on the mold composition and the casting process, WFS can contain substances that prevent its direct emission to the environment. In Brazil, this waste is classified according to the Standard ABNT NBR 10004:2004 as a waste Class II (Non-Inert). The recycling of this waste is limited because its characteristics change significantly after use. Although the use (or reuse) of this byproduct in civil construction is a technically feasible alternative, its effects must be evaluated, especially from mechanical and environmental points of view. Thus, the objective of this study is to investigate the effect of the use of WFS in the manufacture of cement artifacts, such as masonry blocks for walls, structural masonry blocks, and paving blocks. Blocks containing different concentrations of WFS (up to 75% by weight) were produced and evaluated using compressive strength tests (35 MPa at 28 days) and toxicity tests on Daphnia magna, Allium cepa (onion root), and Eisenia foetida (earthworm). The results showed that there was not a considerable reduction in the compressive strength, with values of 35 ± 2 MPa at 28 days. The toxicity study with the material obtained from leaching did not significantly interfere with the development of D. magna and E. foetida, but the growth of the A. cepa species was reduced. The study showed that the use of this waste in the production of concrete blocks is feasible from both mechanical and environmental points of view.  相似文献   
786.
This investigation was conducted to evaluate experimental determination of specific gravity (Gs) of municipal solid waste (MSW). Water pycnometry, typically used for testing soils was adapted for testing MSW using a large flask with 2000 mL capacity and specimens with 100–350 g masses. Tests were conducted on manufactured waste samples prepared using US waste constituent components; fresh wastes obtained prior and subsequent to compaction at an MSW landfill; and wastes obtained from various depths at the same landfill. Factors that influence specific gravity were investigated including waste particle size, compaction, and combined decomposition and stress history. The measured average specific gravities were 1.377 and 1.530 for as-prepared/uncompacted and compacted manufactured wastes, respectively; 1.072 and 1.258 for uncompacted and compacted fresh wastes, respectively; and 2.201 for old wastes. The average organic content and degree of decomposition were 77.2% and 0%, respectively for fresh wastes and 22.8% and 88.3%, respectively for old wastes. The Gs increased with decreasing particle size, compaction, and increasing waste age. For fresh wastes, reductions in particle size and compaction caused occluded intraparticle pores to be exposed and waste particles to be deformed resulting in increases in specific gravity. For old wastes, the high Gs resulted from loss of biodegradable components that have low Gs as well as potential access to previously occluded pores and deformation of particles due to both degradation processes and applied mechanical stresses. The Gs was correlated to the degree of decomposition with a linear relationship. Unlike soils, the Gs for MSW was not unique, but varied in a landfill environment due both to physical/mechanical processes and biochemical processes. Specific gravity testing is recommended to be conducted not only using representative waste composition, but also using representative compaction, stress, and degradation states.  相似文献   
787.
A two-generation reproductive toxicity study of zinc chloride (ZnCl2) was conducted in rats. Fo male and female rats were administered 0.00 (control), 7.50 (low), 15.00 (mid) and 30.00 (high) mg/kg/day of ZnCl2. Selected F1 male and female rats were exposed to the same doses received by their parents (Fo). Exposure of F0 parental rats to ZnCl2 showed significant reduction in fertility, viability (days 0 and 4), and the body weight of F1 pups from the high-dose group but caused no effects on litter size, weaning index, and sex ratio. Similarly, the continued exposure of F1 parental rats to ZnCl2 also reduced fertility, liter size, viability (day 0), and the body weight of F2 pups within the high-dose group but caused no effects on weaning index and sex ratio. Exposure of ZnCl2 to F0 and F1 parental males resulted in a significant reduction in their body weights, and the F0 and F1 parental females did not show any significant difference in their body weights compared to their control groups. However, the postpartum dam weights of both F0 and F1 female rats were significantly reduced compared to their controls. Exposure of ZnCl2 to Fo and F1 generation parental rats did not produce any significant change of their clinical signs as well as their clinical pathology parameters, except the alkaline phosphotase (ALK) level, which showed an upward trend in both sexes of both generations. Exposure of ZnCl2 to F0 rats resulted in a reduction of brain, liver, kidney, spleen and seminal vesicles weights of males and in the spleen and uterus of females. Similarly, exposure of F1 rats to ZnCl2 also resulted in reduction of brain, liver, kidney, adrenal, spleen, prostate and seminal vesicles weights of males and in spleen and uterus of females. ZnCl2 exposure resulted in grossly observed gastro-intestianla (GI) tract, lymphoreticular/hematopoietic, and reproductive tract lesions in parental rats in both generations. Reduced body fat was also recorded in F1 parental rats.  相似文献   
788.
Diuron (3-(3,4-dichlorophenyl)- = 1,1-dimethylurea) and simazine (6-chloro-N 2, N 4-diethyl-1,3,5-triazine-2,4-diamine) are soil-applied herbicides used in olive crops. The objective of this study is to investigate the effect of these herbicides on Photosystem II photochemistry of Olea europaea L., and whether the amendment of soil with an organic waste (OW) from olive oil production industry modifies this effect. For this purpose, herbicide soil adsorption studies, with unamended and OW-amended soil, and chlorophyll fluorescence measurements in adult olive leaves, after one, two and three weeks of soil herbicide treatment and/or OW amendment, were performed. Soil application of these herbicides reduced the efficiency of Photosystem II photochemistry of olive trees due to chronic photoinhibition, and this effect is counterbalanced by the addition of OW to the soil. OW reduces herbicide uptake by the plant due to an increase in herbicide adsorption.  相似文献   
789.
The aim of this work was to study the pharmacokinetic behavior and the inhibitory effect of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities of chlorpyrifos (CPF) in steer cattle after pour-on administration. Determination of cholinesterase activity in plasma and erythrocyte was carried out according to Ellman kinetic method. CPF was analyzed by gas chromatography. AChE was the predominant form of cholinesterase analyzed, with low levels of BChE in plasma. Following the treatment with CPF, the maximum inhibitory effect on AChE or BChE were 50.88 ± 11.57 and 42.66 ± 12.01%, respectively. The chlorpyrifos plasma concentrations observed were low and they presented a high variability. Chlorpyrifos peak plasma concentration (10.42 ± 4.76 μ g/L) was reached at 8.42 ± 13.97 h. The pesticide was not detected in plasma after 48 h post treatment. The values of area under the curve (AUC) were 118.48 ± 87.46 μ g· h/L and mean resistance time (MRT) were 13.38 ± 10.41 h. The pour-on exposure to the organophosphate chlorpyrifos significantly reduced AChE and BChE activity in steer cattle and the recovery was not reached on 50 days post-treatment.  相似文献   
790.
This study assessed the runoff potential of tylosin and chlortetracycline (CTC) from soils treated with manure from swine fed rations containing the highest labeled rate of each chemical. Slurry manures from the swine contained either CTC at 108 μ g/g or tylosin at 0.3 μ g/g. These manures were surface applied to clay loam, silty clay loam, and silt loam soils at a rate of 0.22 Mg/ha. In one trial, tylosin was applied directly to the soil surface to examine runoff potential of water and chemical when manure was not present. Water was applied using a sprinkler infiltrometer 24-hr after manure application with runoff collected incrementally every 5 min for about 45 min. A biofilm crust formed on all manure-treated surfaces and infiltration was impeded with > 70% of the applied water collected as runoff. The total amount of CTC collected ranged from 0.9 to 3.5% of the amount applied whereas tylosin ranged from 8.4 to 12%. These data indicate that if surface-applied manure contains antimicrobials, runoff could lead to offsite contamination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号