首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19621篇
  免费   334篇
  国内免费   342篇
安全科学   759篇
废物处理   837篇
环保管理   3178篇
综合类   3123篇
基础理论   5023篇
环境理论   9篇
污染及防治   4957篇
评价与监测   1147篇
社会与环境   1103篇
灾害及防治   161篇
  2023年   97篇
  2022年   182篇
  2021年   184篇
  2020年   208篇
  2019年   167篇
  2018年   334篇
  2017年   320篇
  2016年   467篇
  2015年   387篇
  2014年   506篇
  2013年   1565篇
  2012年   684篇
  2011年   1034篇
  2010年   766篇
  2009年   859篇
  2008年   961篇
  2007年   999篇
  2006年   847篇
  2005年   684篇
  2004年   702篇
  2003年   645篇
  2002年   607篇
  2001年   696篇
  2000年   559篇
  1999年   352篇
  1998年   234篇
  1997年   251篇
  1996年   252篇
  1995年   285篇
  1994年   237篇
  1993年   234篇
  1992年   198篇
  1991年   198篇
  1990年   192篇
  1989年   191篇
  1988年   167篇
  1987年   154篇
  1986年   170篇
  1985年   155篇
  1984年   203篇
  1983年   162篇
  1982年   187篇
  1981年   168篇
  1980年   140篇
  1979年   155篇
  1978年   100篇
  1977年   107篇
  1975年   93篇
  1974年   95篇
  1972年   99篇
排序方式: 共有10000条查询结果,搜索用时 578 毫秒
411.
Soil respiration is a large C flux which is of primary importance in determining C sequestration. Here we ask how it is altered by atmospheric CO2 concentration and N additions. Swards of Lolium perenne L. were grown in a Eutric cambisol under controlled conditions with and without the addition of 200 kg NO? 3 ?N ha?1, at either 350 ppm or 700 ppm CO2, for 3 months. Soil respiration and net canopy photosynthesis were both increased by added N and elevated CO2, but soil respiration increased proportionately less than fixation by photosynthesis. Thus, both elevated CO2 and N appeared to increase potential C sequestration, although adding N at elevated CO2 reduced the C sequestered as a proportion of that fixed relative to elevated CO2 alone. Across all treatments below-ground respiratory C losses were predicted by root biomass, but not by soil solution C and N concentrations. Specific root-dependent respiration was increased by elevated CO2, such that below-ground respiration per unit biomass and per unit plant N was increased.  相似文献   
412.
Critical N loads for ombrotrophic bogs, which often contain rare and N-sensitive plants (especially those in lower plant groups: lichens, mosses and liverworts), are based on very few experimental data from measured, low background N deposition areas. Additionally the relative effects of reduced versus oxidised N are largely unknown. This paper describes an automated field exposure system (30 km S. of Edinburgh, Scotland) for treating ombrotrophic bog vegetation with fine droplets of oxidised N (NaNO3) and reduced N (NH4Cl). Whim Moss exists in an area of low ambient N deposition (ca. 8 kg N ha?1 y?1), the sources and quantification of which are described. The wet N treatment system is run continuously, and is controlled/activated by wind speed and rainfall to provide a unique simulation of “real worl” treatment patterns (no rain=no treatment). Simulated precipitation is supplied at ionic concentrations below 4 mM in rainwater collected on site. Treatments provide a replicated dose response to 16, 32 and 64 kg N ha?1 y?1 adjusted for ambient deposition (8 kg N ha?1 y?1). The 16 and 64 kg N ha?1 y?1 are duplicated with a P+K supplement. Baseline soil chemistry and foliar nutrient status was established for all 44 plots for Calluna vulgaris, Sphagnum capillifolium, Hypnum jutlandicum and Cladonia portentosa.  相似文献   
413.
Providing an accurate estimate of the dry component of N deposition to low N background, semi-natural habitats, such as bogs and upland moors dominated by Calluna vulgaris is difficult, but essential to relate nitrogen deposition to effects in these communities. To quantify the effects of NH3 inputs to moorland vegetation growing on a bog at a field scale, a field release NH3 fumigation system was established at Whim Moss (Scottish Borders) in 2002. Gaseous NH3 from a line source was released along of a 60 m transect, when meteorological conditions (wind speed >2.5 m s?1 and wind direction in the sector 180–215°) were met, thereby providing a profile of decreasing NH3 concentration with distance from the source. In a complementary study, using a NH3 flux chamber system, the relationships between NH3 concentrations and cuticular resistances were quantified for a range of NH3 concentrations and micrometeorological conditions for moorland vegetation. Cuticular resistances increased with NH3 concentration from 11 s m?1 at 3.0 μg m?3 to 30 s m?1 at 30 μg m?3. The NH3 concentration data and the concentration-dependent canopy resistance are used to calculate NH3 deposition taking into account leaf surface wetness. The implications of using an NH3 concentration-dependent cuticular resistance and the importance for refining critical loads are discussed.  相似文献   
414.
A field ammonia (NH3) release experiment and open top chambers containing moorland monoliths continuously fumigated with NH3 or sprayed with NH4Cl were used to assess the potential for using δ15N values in determining the area of influence around a point NH3 emission source. δ15N values are being increasingly used as environmental tracers and we tested the hypothesis that the δ15N signal from an NH3 emission source is observable in nearby vegetation. Using modified monitoring devices, atmospheric NH3 concentrations were found to decrease with distance from source, with δ15N values also reflecting this trend, producing a signal shift with changing concentration. Open top chamber studies of δ15N values of Calluna vulgaris (L.) Hull indicated a correlation with deposition treatments in current year shoots. Analysis of Calluna shoots from the NH3 release showed a similar trend of δ15N enrichment. Significant linear correlations between δ15N and percent N in plant material were found, both in the controlled conditions of the open top chambers and at the NH3 release site, illustrating the possible use of this technique in N deposition biomonitoring.  相似文献   
415.
Stream restoration projects are often based on morphological form or stream type and, as a result, there needs to be a clear tie established between form and function of the stream. An examination of the literature identifies numerous relationships in naturally forming streams that link morphologic form and stream processes. Urban stream restoration designs often work around infrastructure and incorporate bank stabilization and grade control structures. Because of these imposed constraints and highly altered hydrologic and sediment discharge regimens, the design of urban channel projects is rather unclear. In this paper, we examine the state of the art in relationships between form and processes, the strengths and weaknesses of these existing relationships, and the current lack of understanding in applying these relationships in the urban environment. In particular, we identify relationships that are critical to urban stream restoration projects and provide recommendations for future research into how this information can be used to improve urban stream restoration design. It is also suggested that improving the success of urban restoration projects requires further investigation into incorporating process-based methodologies, which can potentially reduce ambiguity in the design and the necessity of using an abundant amount of in-stream structures.  相似文献   
416.
Using resource-monitoring data from seven protected areas, the effectiveness of three campfire policies—campfire ban, designated campfires, and unregulated campfires—were assessed based on the number of fire sites and the amount of tree damage. Results indicate that unregulated campfire policies permitted substantial numbers of fire sites and tree damage in campsites, although fire bans did not eliminate or even substantially decrease these problems. A designated campfire policy was effective in decreasing number of fire sites, but little difference was found among policies regarding tree damage. Given the importance of campfires to visitor experiences, campfire prohibitions could be viewed as unnecessarily restrictive based on their limited success in preventing resource damage. Conclusions encourage protected-area managers to consider designated campfire policies and prohibitions on axes, hatchets, and saws to better meet resource protection and visitor experience mandates.  相似文献   
417.
The soil erodibility index (EI) of Conservation Reserve Program (CRP) lands, which was the major criterion for CRP enrollment, was assessed for six counties in southwestern Kansas using USGS seamless digital elevation model data and Geographical Informational System techniques. The proportion of land areas with EI values of 8 or lower was less than 1% of the entire study area and most of the land areas (72.5%) were concentrated on EI values between 8 and 24. Although land acreage with EI values of 24 or higher decreased dramatically, the proportion of CRP lands to the other land-use types did not change much from low to high EI levels. The soil EI and physical soil characteristics of the CRP lands were compared to those of other land-use types. In general, the mean EI values of the land-use types were strongly correlated with physical soil properties, including organic matter content, clay content, available water capacity, permeability, and texture. CRP lands were compared in detail with cropland in terms of their soil characteristics to infer the pivotal cause of the land transformation. Although there was no significant statistical difference in EI between cropland and CRP soils, soil texture, soil family, and permeability were statistically different between the two. Statistical analyses of these three variables showed that CRP soils had coarser texture and higher permeability on average than cropland soils, indicating that CRP lands in the study area are drier than cropland soils. Therefore, soil moisture characteristics, not necessarily soil erosion potential, might have been the key factor for CRP enrollment in the study area.  相似文献   
418.
To predict the availability of metals to plants, it is important to understand both solution- and solid-phase processes in the soil, including the kinetics of metal release from its binding agent (ligand and/or particle). The present study examined the speciation and availability of Zn, Cd, Pb, and Cu in a range of well-equilibrated metal-contaminated soils from diverse sources using several techniques as a basis for predicting metal uptake by plants. Wheat (Triticum aestivum L.) was grown in 13 metal-contaminated soils and metal tissue concentrations (Zn, Cd, Pb, and Cu) in plant shoots were compared with total soil metal concentrations, total soluble metal, and free metal activities (pM2+) in soil pore waters, 0.01 M CaCl2-extractable metal concentrations, E values measured by isotope dilution, and effective metal concentrations, C(E), measured by diffusive gradients in thin films (DGT). In the DGT technique, ions are dynamically removed by their diffusion through a gel to a binding resin, while E values represent the isotopically exchangeable (labile) metal pools. Free metal activities (Zn2+, Cd2+, and Pb2+) in soil pore waters were determined using a Donnan dialysis technique. Plant Zn and Cd concentrations were highly related to C(E), while relationships for Zn and Cd with respect to the other measures of metals in the soils were generally lower, except for CaCl2-extractable Cd. These results suggest that the kinetically labile solid-phase pool of metal, which is included in the DGT measurement, played an important role in Zn and Cd uptake by wheat along with the labile metal in soil solution. Plant Pb concentrations were highly related to both soil pore water concentrations and C(E), indicating that supply from the solid phase may not be so important for Pb. Predictions of Cu uptake by wheat from these soils by the various measures of Cu were generally poor, except surprisingly for total Cu.  相似文献   
419.
This paper assesses the contextual, programmatic and decision-making factors that affect the performance of mature municipal solid waste recycling programs. Tobit models were prepared for cities with populations of less than or more than 25?000 to facilitate analysis of recycling performance. Recycling participation rates were found to be higher among cities in both groups that offered more convenient recycling programs and whose residents had a higher mean household income. The larger cities that achieved higher participation rates employed a decision-making process known as ‘collaborative learning’, imposed sanctions on improper sorting recyclable materials, and had a larger non-minority population. Among smaller cities, higher participation was attained by using variable fee pricing for solid waste collection and by mandating household participation. The study findings suggest that future research should focus on improved ways to characterize and measure the decision-making processes used to make policy changes in order to facilitate analysis of the causal and temporal relationships between decision-making processes and program performance.  相似文献   
420.
The effects of prescribed burning on forage abundance and suitability for elk (Cervus elaphus) during the snow-free season was evaluated in east-central Banff National Park, Canada. Six coniferous forest and mixed shrub-herb plant communities (n=144 plots), and 5223ha of burned (n=131) vegetation <12 years old were sampled using a stratified semi-random design. Sampling units represented various combinations of vegetation, terrain conditions, and stand ages that were derived from digital biophysical data, with plant communities the basic unit of analysis. Burning coniferous forest stands reduced woody biomass, and increased herbaceous forage from 146 to 790 kg/ha. Increases commonly occurred in the percent cover of hairy wild rye (Leymus innovatus (Beal) Pigler) and fireweed (Chamerion angustifolium (L.) Holub.). The herbaceous components of mixed shrub-herb communities increased from 336-747 kg/ha to 517-1104 kg/ha in response to burning (P<0.025, Mann-Whitney U-test). Browse biomass (mostly Salix spp. and Betula nana L.) increased >or=220% (P相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号