首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19621篇
  免费   334篇
  国内免费   342篇
安全科学   759篇
废物处理   837篇
环保管理   3178篇
综合类   3123篇
基础理论   5023篇
环境理论   9篇
污染及防治   4957篇
评价与监测   1147篇
社会与环境   1103篇
灾害及防治   161篇
  2023年   97篇
  2022年   182篇
  2021年   184篇
  2020年   208篇
  2019年   167篇
  2018年   334篇
  2017年   320篇
  2016年   467篇
  2015年   387篇
  2014年   506篇
  2013年   1565篇
  2012年   684篇
  2011年   1034篇
  2010年   766篇
  2009年   859篇
  2008年   961篇
  2007年   999篇
  2006年   847篇
  2005年   684篇
  2004年   702篇
  2003年   645篇
  2002年   607篇
  2001年   696篇
  2000年   559篇
  1999年   352篇
  1998年   234篇
  1997年   251篇
  1996年   252篇
  1995年   285篇
  1994年   237篇
  1993年   234篇
  1992年   198篇
  1991年   198篇
  1990年   192篇
  1989年   191篇
  1988年   167篇
  1987年   154篇
  1986年   170篇
  1985年   155篇
  1984年   203篇
  1983年   162篇
  1982年   187篇
  1981年   168篇
  1980年   140篇
  1979年   155篇
  1978年   100篇
  1977年   107篇
  1975年   93篇
  1974年   95篇
  1972年   99篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
901.
The body of information presented in this paper is directed to scientists working in atmospheric dispersion research and model development. Two years of field measurements in the coastal area of Bilbao in northern Spain show that the diffusion behavior in this complex terrain can be classified into several well defined patterns, which correspond to certain meteorological conditions. The approach taken has been the systematic use of SO2 remote sensors (COSPEC) and ground level monitors in moving platforms which are used to follow and document the flow of the air mass. Results to date show that complex reentry cycles can occur and that synoptically different flows may be indistinguishable by wind sensors at ground level (affected by channeling), and yet result in totally different observed pollution levels by a fixed monitoring network (affected by topographical effects). These results are being used to parameterize the cause-effect relationships and guide the modeling efforts in this area of complex terrain.  相似文献   
902.
Federal new source performance standards to control air emissions of sulfur dioxide from new industrial boilers were proposed by EPA on June 19, 1986. These standards would require boiler owners to reduce SO2 emissions by 90 percent and meet an emission limit of 1.2 lb/MM Btu of heat input for coal-fired boilers and 0.8 lb/MM Btu for oil-fired boilers. In developing these standards, several regulatory options were considered, from standards that could be met by firing low sulfur fuels to standards that would necessitate flue gas treatment. The environmental, economic, and cost impacts of each option were analyzed. National impacts were estimated by a computer model that projects the population of new boilers over the 5-year period following proposal, predicts the compliance strategy that will be used to comply with the particular option (always assuming that the lowest cost method of compliance will be selected), and estimates the resulting emission reductions and costs. Impacts on specific industries and on model boilers were also analyzed. This paper focuses on these analyses and their results. The Agency's conclusions from these analyses, which led to the decision to establish percent reduction standards, are provided, and the proposed SO2 standards are summarized. The proposed standards also include an emission limit for particulate matter from oil-fired boilers (0.1 lb/MM Btu). However, this article focuses only on the SO2 standards.  相似文献   
903.
904.
Alternative vehicular fuels are proposed as a strategy to reduce urban air pollution. In this paper, we analyze the emission Impacts of electric vehicles In California for two target years, 1995 and 2010. We consider a range of assumptions regarding electricity consumption of electric vehicles, emission control technologies for power plants, and the mix of primary energy sources for electricity generation. We find that, relative to continued use of gasoline-powered vehicles, the use of electric vehicles would dramatically and unequivocally reduce carbon monoxide and hydrocarbons. Under most conditions, nitrogen oxide emissions would decrease moderately. Sulfur oxide and particulate emissions would Increase or slightly decrease. Because other areas of the United States tend to use more coal in electricity generation and have less stringent emission controls on power plants, electric vehicles may have less emission reduction benefits outside California.  相似文献   
905.
ABSTRACT

Exposures from indoor environments are a major issue for evaluating total long-term personal exposures to the fine fraction (<2.5μm in aerodynamic diameter) of particulate matter (PM). It is widely accepted in the indoor air quality (IAQ) research community that biocontamination is one of the important indoor air pollutants. Major indoor air biocontaminants include mold, bacteria, dust mites, and other antigens. Once the biocontaminants or their metabolites become airborne, IAQ could be significantly deteriorated. The airborne biocontaminants or their metabolites can induce irritational, allergic, infectious, and chemical responses in exposed individuals.

Biocontaminants, such as some mold spores or pollen grains, because of their size and mass, settle rapidly within the indoor environment. Over time they may become nonviable and fragmented by the process of desiccation. Desiccated nonviable fragments of organisms are common and can be toxic or allergenic, depending upon the specific organism or organism component. Once these smaller and lighter fragments of biological PM become suspended in air, they have a greater tendency to stay suspended. Although some bioaerosols have been identified, few have been quantitatively studied for their prevalence within the total indoor PM with time, or for their affinity to penetrate indoors.

This paper describes a preliminary research effort to develop a methodology for the measurement of nonvi-able biologically based PM, analyzing for mold and ragweed antigens and endotoxins. The research objectives include the development of a set of analytical methods and the comparison of impactor media and sample size, and the quantification of the relationship between outdoor and indoor levels of bioaerosols. Indoor and outdoor air samples were passed through an Andersen nonviable cascade impactor in which particles from 0.2 to 9.0 um were collected and analyzed. The presence of mold, ragweed, and endotoxin was found in all eight size ranges. The presence of respirable particles of mold and pollen found in the fine particle size range from 0.2 to 5.25 um is evidence of fragmentation of larger source particles that are known allergens.  相似文献   
906.
907.
An intensive field study was conducted in Research Triangle Park, North Carolina in the fall of 1986. Ambient concentrations of the following constituents were obtained: nitric acid, nitrous acid, nitrogen dioxide, sulfur dioxide, ammonia, hydrogen ion, and particulate nitrate, sulfate, and ammonium. Results collected using the annular denuder system (ADS) and the transition flow reactor (TFR) are presented and compared.

Both types of samplers had operational detection limits on daily (22-hour) samples that were generally below 1 μg m-3 suggesting that both samplers can provide sensitive measurements for most of the constituents of interest. Both the ADS and TFR show reasonable (>25 percent) within-sampler precision for most of the measured species concentrations, except TFR fine particulate nitrate measurements where results were frequently negative (The TFR fine particulate nitrate measurement is calculated using subtraction of positive numbers).

Comparison of ADS and TFR daily results showed good agreement for total particulate sulfate, the sum of total (coarse plus fine) particulate and gaseous nitrate, and ammonia. As a result of different inlet particle collection efficiencies, the ADS fine particulate sulfate exceeded the TFR (5 percent). In the absence of a filter to collect volatilized particulate ammonium in the ADS, the sum of total particulate and gaseous ammonium in the TFR exceeded that in the ADS. Of potentially more importance, ADS measurements of SO2 and H+ exceeded those of the TFR, while TFR measurements of HNO3 exceeded those of the ADS. Results of this study suggest that the TFR may provide biased measurements of SO2, H+, HNO3, and Fine NO3 - that cannot be corrected without modifications to the fundamental design of the sampling system.  相似文献   
908.
This paper describes a laboratory project to assess the accuracy of emission and indoor air quality models to be used in predicting formaldehyde (HCHO) concentrations in residences due to pressed-wood products made with urea-formaldehyde bonding resins. The products tested were partlcleboard underlayment, hardwood- plywood paneling and medium-density fiberboard (mdf). The products were initially characterized in chambers by measuring their formaldehyde surface emission rates over a range of formaldehyde concentrations, air exchange rates and two combinations of temperature and relative humidity (23° C and 5 0% RH; 26°C and 60% RH). They were then installed in a two-room prototype house in three different combinations (underlayment flooring only; underlayment flooring and paneling; and underlayment flooring, paneling, and mdf). The equilibrium formaldehyde concentrations were monitored as a function of air exchange rate. Particleboard underlayment and mdf, but not paneling, behaved as the emission model predicted over a large concentration range, under both sets of temperature and relative humidity. Good agreement was also obtained between measured formaldehyde concentrations and those predicted by a mass-balance indoor air quality model.  相似文献   
909.
The Management Systems Review is an important component of EPA’s quality assurance program. MSRs enable managers to assess the effectiveness of environmental data operations and the quality assurance/ quality control activities designed to ensure that the results are of the expected quality. These reviews inform managers about aspects of the environmental data operation that are working well and those which may warrant some improvement. A recent review of the Superfund remedial investigation/feasibility study (RI/FS) has shown that the MSR is an excellent tool for providing a systematic definition of complex environmental data operations and for enabling a thorough analysis of these operations. The MSR utilized information gathered from interviews of Regional staff and management and from case studies of recently completed RI/FSs. The findings indicated that environmental data play an important role in most RI/FS decisions and that thorough and structured scoping is critical to the effectiveness of the RI/ FS. Analysis of the RI/FS process using a comprehensive flow model identified several opportunities for changes that may increase efficiency in data collection and the reliability of RI/FS decisions. These changes provide for more effective scoping activities, a streamlined feasibility study, and increased use of treatability studies during the RI. A pilot demonstration of these process changes is being planned for a Regional RI/FS.  相似文献   
910.
Evaluation of Indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: 1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; 2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and 3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: 1) para-dichlorobenzene emissions from solid moth repellant; and 2) particle emissions from unvented kerosene heaters.

The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA’s Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed In large chambers at the J. B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA’s IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on “sink” surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号