首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9836篇
  免费   113篇
  国内免费   93篇
安全科学   283篇
废物处理   459篇
环保管理   1243篇
综合类   1194篇
基础理论   2667篇
环境理论   2篇
污染及防治   2771篇
评价与监测   708篇
社会与环境   667篇
灾害及防治   48篇
  2022年   100篇
  2021年   76篇
  2020年   65篇
  2019年   72篇
  2018年   145篇
  2017年   139篇
  2016年   230篇
  2015年   164篇
  2014年   237篇
  2013年   742篇
  2012年   296篇
  2011年   440篇
  2010年   362篇
  2009年   395篇
  2008年   470篇
  2007年   475篇
  2006年   422篇
  2005年   366篇
  2004年   323篇
  2003年   375篇
  2002年   324篇
  2001年   503篇
  2000年   331篇
  1999年   192篇
  1998年   137篇
  1997年   133篇
  1996年   138篇
  1995年   162篇
  1994年   125篇
  1993年   102篇
  1992年   123篇
  1991年   118篇
  1990年   130篇
  1989年   130篇
  1988年   94篇
  1987年   87篇
  1986年   65篇
  1985年   90篇
  1984年   89篇
  1983年   86篇
  1982年   82篇
  1981年   73篇
  1980年   61篇
  1979年   68篇
  1977年   53篇
  1976年   48篇
  1975年   53篇
  1974年   51篇
  1973年   53篇
  1970年   45篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
821.
With large influx of freshwater that decreases sea-surface salinities, weak wind forcing of <10 m s−1 and almost always warm (>28°C) sea-surface temperature that stratifies and shallows the mixed layer leading to low or no nutrient injections into the surface, primary production in Bay of Bengal is reportedly low. As a consequence, the Bay of Bengal is considered as a region of low biological productivity. Along with many biological parameters, bacterioplankton abundance and production were measured in the Bay of Bengal during post monsoon (September–October 2002) along an open ocean transect, in the central Bay (CB, 88°E) and the other transect in the western Bay (WB). The latter representing the coastal influenced shelf/slope waters. Bacterioplankton abundances (<2 × 109cells l−1) were similar to those reported from the HNLC equatorial Pacific and the highly productive northern Arabian Sea. Yet, the thymidine uptake rates along CB (average of 1.46 pM h−1) and WB (average of 1.40 pM h−1) were less than those from the northwestern Indian Ocean. These abundances and uptake rates were higher than those in the oligotrophic northwestern Sargasso Sea (<7 × 108 cells l−1; av 1.0 pM h−1). Concentrations of chlorophyll a (chl a), primary production rates and total organic carbon (TOC) were also measured for a comparison of heterotrophic and autotrophic production. In the WB, bacterioplankton carbon biomass equaled ∼ 95% of chl a carbon than just 31% in the CB. Average bacterial:primary production (BP:PP) ratios accounted for 29% in the CB and 31% in the WB. This is mainly due to lower primary productivity (PP) in the WB (281 mg C m−2 d−1) than in the CB (306 mg C m−2 day−1). This study indicates that bacteria–phytoplankton relationship differs in the open (CB) and coastal waters (WB). Higher abundance and contrastingly low bacterial production (BP) in WB may be because of the riverine bacteria, brought in through discharges, becoming dormant and unable to reproduce in salinities of 28 or more psu. Heterotrophic bacteria appear to utilize in situ DOC rather rapidly and their carbon demand is ∼50% of daily primary production. It is also apparent that allochthonous organic matter, in particular in the western Bay, is important for meeting their carbon demand.  相似文献   
822.
823.
Nitrogen retention in urban lawns and forests   总被引:5,自引:0,他引:5  
Lawns are a dominant cover type in urban ecosystems, and there is concern about their impacts on water quality. However, recent watershed-level studies suggest that these pervious areas might be net sinks, rather than sources, for nitrogen (N) in the urban environment. A 15N pulse-labeling experiment was performed on lawn and forest plots in the Baltimore (Maryland, U.S.A.) metropolitan area to test the hypothesis that lawns are a net sink for atmospheric-N deposition and to compare and contrast mechanisms of N retention in these vegetation types. A pulse of 15N-NO3-, simulating a precipitation event, was followed through mineral soils, roots, Oi-layer/thatch, aboveground biomass, microbial biomass, inorganic N, and evolved N2 gas over a one-year period. The 15N label was undetectable in gaseous samples, but enrichment of other pools was high. Gross rates of production and consumption of NO3- and NH4+ were measured to assess differences in internal N cycling under lawns and forests. Rates of N retention were similar during the first five days of the experiment, with lawns showing higher N retention than forests after 10, 70, and 365 days. Lawns had larger pools of available NO3- and NH4+; however, gross rates of mineralization and nitrification were also higher, leading to no net differences in NO3- and NH4+ turnover times between the two systems. Levels of 15N remained steady in forest mineral soils from day 70 to 365 (at 23% of applied 15N), but continued to accumulate in lawn mineral soils over this same time period, increasing from 20% to 33% of applied 15N. The dominant sink for N in lawn plots changed over time. Immobilization in mineral soils dominated immediately (one day) after tracer application (42% of recovered 15N); plant biomass dominated the short term (10 days; 51%); thatch and mineral-soil pools together dominated the medium term (70 days; 28% and 36%, respectively); and the mineral-soil pool alone dominated long-term retention (one year; 70% of recovered 15N). These findings illustrate the mechanisms whereby urban and suburban lawns under low to moderate management intensities are an important sink for atmospheric-N deposition.  相似文献   
824.
825.
826.
Maintaining a living plant collection is the most common method of ex situ conservation for plant species that cannot be seed banked (i.e., exceptional species). Viability of living collections, and their value for future conservation efforts, can be limited without coordinated efforts to track and manage individuals across institutions. Using a pedigree-focused approach, the zoological community has established an inter-institutional infrastructure to support long-term viability of captive animal populations. We assessed the ability of this coordinated metacollection infrastructure to support the conservation of 4 plant species curated in living collections at multiple botanic gardens around the world. Limitations in current practices include the inability to compile, share, and analyze plant collections data at the individual level, as well as difficulty in tracking original provenance of ex situ material. The coordinated metacollection framework used by zoos can be adopted by the botanical community to improve conservation outcomes by minimizing the loss of genetic diversity in collections. We suggest actions to improve ex situ conservation of exceptional plant species, including developing a central database to aggregate data and track unique individuals of priority threatened species among institutions and adapting a pedigree-based population management tool that incorporates life-history aspects unique to plants. If approached collaboratively across regional, national, and global scales, these actions could transform ex situ conservation of threatened plant species.  相似文献   
827.
828.
Lethal chemical defenses in prey species can have profound effects on interactions with predators. The presence of lethal defenses in prey can correct the selective imbalance suggested by the life-dinner principle in which the fitness consequences of an encounter between predator and prey should be much greater for the prey species than the predator. Despite the apparent adaptive advantages of lethality the evolution of deadly prey presents a fundamental dilemma. How might lethal defenses confer an individual fitness advantage if both predators and prey die during interactions? We examined the interaction between the rough-skinned newt (Taricha granulosa), which contains a powerful neurotoxin called tetrodotoxin (TTX), and the common garter snake (Thamnophis sirtalis). In some sympatric populations, Th. sirtalis have evolved physiological resistance to TTX. Whether the newts’ toxin confers protection from snake predators or has been disarmed by the snakes’ physiological resistance has not yet been directly tested. In predator–prey trials, newts that were rejected by snakes had greater concentrations of TTX in their skin (4.52 ± 3.49 mg TTX/g skin) than those that were eaten (1.72 ± 1.53 mg TTX/g skin). Despite the plethora of taxa that appear to use TTX defensively, this is the first direct and quantitative demonstration of the antipredator efficacy of TTX. Because the survival probability of a newt (and thus fitness) is affected by individual TTX concentration, selection can drive the escalation of toxin levels in newts. The variable fitness consequences associated with both TTX levels of newts and resistance to TTX in snakes that may promote a strong and symmetrical coevolutionary relationship have now been demonstrated.  相似文献   
829.
Several species of kleptoparasitic and araneophagic spiders (Araneae: Family Theridiidae, Subfamily Argyrodinae) are found in colonial webs of the orb-weaving spider Metepeira incrassata (Araneae, Araneidae) from Mexico, where they steal food and/or prey upon their spider hosts. Census data from natural M. incrassata colonies reveal that the incidence of these species increases with colony size. This pattern may reflect the presence of several other orb-weaving spiders, each with their own kleptoparasitic species, invading larger M. incrassata colonies. As the number of these associated spiders increases, so does the density and number of Argyrodinae species in M. incrassata colonies, suggesting that associated spiders might reduce their own kleptoparasite load by building their webs within M. incrassata colonies. This represents a twofold cost to M. incrassata, as a field enclosure experiment revealed that a primarily kleptoparasitic species (Argyrodes elevatus) may reduce prey available to their hosts, but a kleptoparasitic/araneophagic species (Neospintharus concisus) inflicts high mortality upon M. incrassata. However, the cost of kleptoparasitism and predation by these species may be offset in part for M. incrassata individuals in large colonies by certain defensive mechanisms inherent in groups, i.e., “attack-abatement” and “selfish herd” effects. We conclude that increased occurrence of kleptoparasitic and/or predatory Argyrodinae spiders is a consequence of colonial web building and is an important potential cost of group living for colonial web-building spiders.  相似文献   
830.
Bacteria play important roles in plant–herbivore interactions and communicate with each other with chemical signals, often N-acylhomoserine lactones (AHL). Plant responses to these signals may influence resistance to microbial attack, but the effects of these signals on herbivore defense are unstudied. To determine whether AHL influence jasmonate (JA)-mediated herbivore resistance in Nicotiana attenuata, we treated wild-type (WT) and JA-deficient genotypes (antisense expression of NaLOX3) with N-hexanoyl-dl-homoserine lactone (C6-HSL) and measured the performance of Manduca sexta larvae. Larval mass gain on C6-HSL-treated WT plants was equivalent to that on non-treated NaLOX3-silenced plants, but significantly 4.1-fold larger than on untreated WT plants. Mass gain was unaffected by C6-HSL treatment of NaLOX3-silenced plants. Microarray analysis of the plants elicited with C6-HSL and JA inducing fatty acid–amino acid conjugates revealed a down-regulation of a proteinase inhibitor in the C6-HSL-treated WT plants. The results therefore suggest that the increased performance of M. sexta was due to direct or indirect effect of C6-HSL on JA-mediated defenses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号