首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9810篇
  免费   75篇
  国内免费   43篇
安全科学   198篇
废物处理   487篇
环保管理   801篇
综合类   1322篇
基础理论   2036篇
环境理论   8篇
污染及防治   2823篇
评价与监测   838篇
社会与环境   1378篇
灾害及防治   37篇
  2023年   62篇
  2022年   153篇
  2021年   222篇
  2020年   92篇
  2019年   114篇
  2018年   244篇
  2017年   261篇
  2016年   349篇
  2015年   198篇
  2014年   410篇
  2013年   832篇
  2012年   471篇
  2011年   525篇
  2010年   412篇
  2009年   384篇
  2008年   498篇
  2007年   566篇
  2006年   431篇
  2005年   396篇
  2004年   336篇
  2003年   303篇
  2002年   280篇
  2001年   286篇
  2000年   232篇
  1999年   111篇
  1998年   76篇
  1997年   81篇
  1996年   68篇
  1995年   93篇
  1994年   74篇
  1993年   62篇
  1992年   62篇
  1991年   63篇
  1990年   75篇
  1989年   55篇
  1988年   44篇
  1987年   39篇
  1986年   47篇
  1985年   50篇
  1984年   51篇
  1983年   36篇
  1982年   48篇
  1981年   37篇
  1980年   46篇
  1979年   44篇
  1973年   33篇
  1972年   39篇
  1971年   30篇
  1969年   32篇
  1958年   36篇
排序方式: 共有9928条查询结果,搜索用时 0 毫秒
971.
Effects of high ammonia emissions and nitrogen deposition were investigated on lichens around a pig stockfarm (ca. 7,000 animals) in central Italy. Four sites were selected along a transect at 200, 400, 1000 and 2500 m from the stockfarm, the diversity of epiphytic lichens was measured and transplanted thalli of Xanthoria parietina and Flavoparmelia caperata exposed, together with passive NH3 (diffusion tubes) samplers. Ammonia dramatically decreased from the centre of the stockfarm to the sampled sites, where it was correlated with bark pH. Total lichen diversity was not associated with either NH3 concentrations or bark pH, but the diversity of strictly nitrophytic species was highly correlated with both parameters. Physconia grisea was the best indicator species for NH3 pollution. Total N accumulated in X. parietina and F. caperata was correlated with NH3 concentrations.  相似文献   
972.
The Norilsk industrial ore smelting complex (Taymyr Peninsula, Russian Federation) has significantly impacted many components of local terrestrial and aquatic environments. Whether it has had a major impact on the wider Russian Arctic remains controversial as studies are scarce. From 1986 to 2004, data on heavy metal (Cu, Ni, Zn, Hg, Cd and Hg) concentrations in fish (burbot), moss, lichens, periphyton, hydric soils and snow in and around Norilsk and the most northern parts of the Taymyr Peninsula were analysed. Very high concentrations of Cu (203 μg L?1 ± 51 μg L?1) and Ni (113 μg L?1 ± 15 μg L?1) were found in the water of the Schuchya River close to Norilsk. Heavy metal concentrations in burbot liver were highest in Lake Pyasino near Norilsk compared to other study regions that were >100 km distant. From 1989-1996, Cu (121 μg L?1 ± 39 μg L?1 SD), Zn (150 μg L?1) ± 70 μg L?1) and Ni (149 μg L?1 ± 72 μg L?1) snow concentrations were greatest in Norilsk, but were low elsewhere. By 2004, these concentrations had dropped significantly, especially for Cu-74 μg L?1 (±18.7 μg L?1 SD), Zn-81.7 μg L?1 (± 31.3 μg L?1 SD) and Ni-80 μg L?1(±18.0 μg L?1 SD). Norilsk and its surroundings are subject to heavy pollution from the Norilsk metallurgical industry but these are absent from the greater Arctic region due to the prevailing winds and the Byrranga Mountains. Pollution abatement measures have been made so further investigations are necessary in order to assess their efficiency.  相似文献   
973.
Variation in the content of N, P, K, Ca, Mg, Na, Cu, Zn, Mn, and Fe has been analyzed in the needles of 19 spruce species growing in the natural and urbanized ecosystems of Siberia and Central Asia. The results have shown that similarity in the content of biophilic elements in one-year-old needles of different species is conditioned by biochemical processes, which confirms the status of these species as passive bioindicators of environmental quality. The contents of trace elements in perennial needles, except color variations of chlorophyll, deserve further study as prospective indicators of environmental quality.  相似文献   
974.
Bayer-Raich M  Jarsjö J  Teutsch G 《Journal of contaminant hydrology》2007,90(3-4):240-51; discussion 252-7
We consider the results of a recent paper in this journal [Zeru, A. and Sch?fer, G., 2005. Analysis of groundwater contamination using concentration-time series recorded during an integral pumping test: Bias introduced by strong concentration gradients within the plume. Journal of Contaminant Hydrology 81 (2005) 106-124], which addresses the field-scale characterisation of contaminant plumes in groundwater. There, it is concluded that contaminant concentration gradients can bias Integral Pumping Test (IPT) interpretations considerably, in particular if IPTs are conducted in advective fronts of contaminant plumes. We discuss implications of this setting and also argue that the longitudinal and transverse dispersivities used in the examples of Zeru and Sch?fer (2005) of up to 30 m and 3 m, respectively, are generally very high for the here relevant capture zone scale (<20 m). However, regardless of both longitudinal and transverse concentration gradients, we further show through a counter-example that IPT results are unbiased as long as the concentration attenuation along the flow direction is linear over the capture zone extent.  相似文献   
975.
The anthropogenic geochemical transformation of soil cover in large nonferrous mining centers of the Selenga River basin was assessed. The results of the geochemical survey of 2010–2012 revealed the spatial distribution patterns and abundances of 18 hazardous heavy metals and metalloids in the soils of Erdenet (Mongolia) and Zakamensk (Buryat republic, Russian Federation). In both cities, mining activities disturbed soil cover which accumulates Mo, Cu, As, Sb, W in Erdenet and Bi, W, Cd, Be, Pb, Mo, Sb in Zakamensk. Maximum accumulation of elements in Erdenet is restricted to the industrial zone. In Zakamensk, it has spread on ½ of the territory with the degree of multielemental pollution exceeding the extremely dangerous level by 16 times. The effect of mining centers on the state of the river system is local and does not spread to the Selenga River. Downstream from Erdenet, an artificial pool intercepts heavy metal and metalloid flows of the Erdenetii-Gol River. By contrast, downstream from the tailing dumps of the Dzhida tungsten–molybdenum plant the concentrations of ore elements W and Mo and their accessories Bi and Cd in the Modonkul River exceed background values by 146, 20, 57, and 21 times, respectively, decreasing by an order of magnitude 30 km downstream.  相似文献   
976.

Polylactic acid (PLA) and thermoplastic starch (TPS) are biodegradable polymers of biological origin, and the mixture of these polymers has been studied due to the desirable mechanical properties of PLA and the low processing cost of TPS. However, the TPS/PLA combination is thermodynamically immiscible due to the poor interfacial interaction between the hydrophilic starch granules and the hydrophobic PLA. To overcome these limitations, researchers studied the modification, processing, and properties of the mixtures as a strategy to increase the compatibility between phases. This review highlights recent developments, current results, and trends in the field of TPS/PLA-based compounds during the last two decades, with the main focus of improving the adhesion between the two components. The TPS/PLA blends were classified as plasticized, compatible, reinforced and with nanocomposites. This article presents, based on published research, TPS/PLA combinations, considering different methods with significant improvements in mechanical properties, with promising developments for applications in food packaging and biomedicine.

  相似文献   
977.
Regional estimates of both anthropogenic and biogenic emissions are important inputs for models of atmospheric chemistry. A disaggregated emissions inventory of all relevant pollutants for an area of 100 x 100 km2 centered in Burriana (Castellon, Spain) has been worked out. Time and spatial resolutions were hourly and 1 x 1 km2, respectively. Estimates were made for all relevant sources of anthropogenic emissions. The pollutants considered were SO2, NOx, NMVOCs (nonmethane volatile organic compounds), CH4, CO, CO2, N2O, and NH3. Thus, the emissions inventory includes up to 18 different NMVOCs. Emissions were computed for a typical sunny workday in June when strong photochemical activity could be expected. A "top-down" methodology was applied, taking as a starting point official annual and provincial estimates based on CORINAIR emission factors. This procedure is a very useful tool, particularly for those cases where a lack of sufficient local detailed information about the main emission-generating activities, such as road traffic, makes the use of a "bottom-up" approximation inadvisable. Moreover, updating these emission inventories is easier and they could be used to evaluate the impact of possible abatement strategies.  相似文献   
978.
979.
D. Lemos  V. N. Phan 《Marine Biology》2001,138(5):985-997
Dry weight (DW), oxygen consumption, ammonia-N excretion, proximate biochemical composition (total protein, carbohydrate, lipid, water and ash), and energy content (estimated from biochemical composition and by wet combustion) were determined in early developmental stages of cultured Farfantepenaeus paulensis. Pooled samples from embryonic, larval and postlarval stages (at 26 ± 1 °C and 34 ± 1‰) were used for measurements. The study focused on physiological and biochemical processes during transitional periods of ontogeny, such as hatching, lecithotrophic and planktotrophic stages, metamorphosis, and the attainment of a benthic existence in postlarva. DW showed higher increment between protozoea I (PZ I) and mysis I (M I) than in the next mysid and postlarval stages. Individual rates of oxygen consumption and ammonia-N excretion increased, while weight-specific rates presented significant reduction throughout development. Higher weight-specific oxygen consumption was registered in nauplius III (N III) and PZ I, following a decrease in subsequent stages. Postlarval stages PL V–VI and PL X–XII exhibited the lowest values among the stages studied. Weight-specific excretion was high in N III and protozoeal stages, with maximum values in PZ II, while the following stages were marked by lower rates. O:N ratios indicated higher protein catabolism in the stages between egg and M I and a shift to more lipid utilization close to metamorphosis. Water content was higher in the protozoeal stages and decreased afterwards. Higher percentages of protein, lipid and carbohydrate (%DW) were observed in egg and nauplius stages. Protein and lipid decreased from the egg through the naupliar and protozoeal stages, rising again in mysis stages. Lipid content (%DW) decreased in PL V–VI and PL X–XII. Lipid:protein ratios showed an increase of the importance of lipid between PZ III and M II. Carbohydrates represented a minor fraction of body composition, and ash percentages increased from egg to a maximum in PZ II, decreasing in subsequent stages. Energy content determined by wet combustion or calculated by energy equivalents presented the same trend throughout development, varying similarly to protein. Protein was the main energy contributor to body energy in all stages, while the importance of lipid was higher in egg and early naupliar stages. Trends observed in metabolic rates and body composition may be associated to morphological and behavioral changes during the early stages of penaeid development, such as the transition from herbivory to omnivory, and the adoption of a benthic existence. Different ontogenetic energy strategies contribute to succeed through such diverse type of development. Received: 4 July 2000 / Accepted: 6 December 2000  相似文献   
980.
Abstract

Supply curves were prepared for coal-fired power plants in the contiguous United States switching to Wyoming's Powder River Basin (PRB) low-sulfur coal. Up to 625 plants, representing ~44% of the nameplate capacity of all coal-fired plants, could switch. If all switched, more than $8.8 billion additional capital would be required and the cost of electricity would increase by up to $5.9 billion per year, depending on levels of plant derating. Coal switching would result in sulfur dioxide (SO2) emissions reduction of 4.5 million t/yr. Increase in cost of electricity would be in the range of 0.31-0.73 cents per kilowatt-hour. Average cost of S emissions reduction could be as high as $1298 per t of SO2. Up to 367 plants, or 59% of selected plants with 32% of 44% nameplate capacity, could have marginal cost in excess of $1000 per t of SO2. Up to 73 plants would appear to benefit from both a lowering of the annual cost and a lowering of SO2 emissions by switching to the PRB coal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号